
4/22/2016

1

Arduino
.

1

2

4/22/2016

2

3

4

4/22/2016

3

5

6

4/22/2016

4

Other Hardware Choices-Boards
Arduino BT
The Arduino BT is an Arduino board with built-in bluetooth module, allowing for wireless
communication.
LilyPad Arduino
The LilyPad Arduino is a microcontroller board designed for wearables and e-textiles. It can be
sewn to fabric and similarly mounted power supplies, sensors and actuators with conductive
thread.

Arduino Nano
Arduino Nano is a surface mount breadboard embedded version with integrated USB. It is a
smallest, complete, and breadboard friendly. It has everything that Diecimila has (electrically)
with more analog input pins and onboard +5V AREF jumper.

7

Other Hardware Choices-SheildsXbee Shield
The Xbee shield allows an Arduino board to communicate wirelessly using Zigbee. The module can communicate up to 100 feet indoors
or 300 feet outdoors (with line-of-sight). It can be used as a serial/usb replacement or you can put it into a command mode and configure
it for a variety of broadcast and mesh networking options.
The Xbee shield was created in collaboration with Libelium, who developed it for use in their SquidBee motes (used for creating sensor
networks).
Adafruit Servo/Stepper/DC Motor shield
A shield that can control 2 hobby servos and up to 2 unipolar/bipolar stepper motors or 4 bi-directional DC motors.
Battery Shield
A shield from Liquidware that connects to the back of the Arduino, with a USB-rechargable lithium ion battery that can power an Arduino
for 14-28 hours depending on the circuit
Liquidware TouchShield
OLED touch screen shield.
Adafruit Wave shield
Plays any size 22KHz audio files from an SD memory card for music, effects and interactive sound art
Adafruit GPS & Datalogging shield
Connects up a GPS module and can log location, time/date as well as sensor data to an SD memory flash card.
Adafruit XPort/Ethernet shield
Allows use of an XPort module for connecting to the Internet as a client or server.

8

4/22/2016

5

Other Hardware Choices-Sheilds
Adafruit GPS & Datalogging shield
Connects up a GPS module and can log location, time/date as well as
sensor data to an SD memory flash card.

Adafruit XPort/Ethernet shield
Allows use of an XPort module for connecting to the Internet as a client
or server.

http://ladyada.net 9

Other Hardware Choices-Sheilds
Liquidware TouchShield
OLED touch screen shield.

http://www.liquidware.com

Adafruit Servo/Stepper/DC Motor shield
A shield that can control 2 hobby servos and up to 2 unipolar/bipolar
stepper motors or 4 bi-directional DC motors.

http://ladyada.net 10

4/22/2016

6

11

12

4/22/2016

7

Connecting ARDUINO Uno with PC’s USB Port

13

14

4/22/2016

8

Selecting and Updating the Drivers if Needed

15

16

4/22/2016

9

17

18

4/22/2016

10

C++ Programming Structure and Syntax for ARDUINOC++ Programming Structure and Syntax for ARDUINO

• Structure:

1. The basic programming for ARDUINO
revolves around 2 simple parts.

2. These 2 parts are the necessary ingredients
for your program to work.

3. Setup function in the figure run only once
and is used for the initialization of Serial
port and I/O’s.

4. Loop function is used to trigger the
conditions that run continuously like reading
input or sending the data to output port if
conditions are meet.

19

Basic Instruction Set for Digital I/O’s and Conditional
Loops

20

4/22/2016

11

Acceptable Data Type

• Byte: 8-bits, ranges from 0 to 255.

• Integer (int): 16-bits, ranges from -32768 to 32767.

• Unsigned int: 16-bits, ranges from 0 to 65535.

• long: 32-bits, ranges from -2,147,483,648 to 2,147,483,647.

• float: 32-bits, ranges from

21

22

4/22/2016

12

Example of LED blinking with 1sec delay

23

Button & LED Example

24

4/22/2016

13

Knight Rider Example

25

Arduino-Digital Output-Sound-Piezo

A Piezo is an electronic piece that converts electricity energy to sound. It is a
digital output device. You can make white noise or even exact musical notes (
frequencies for musical notes) based on the duration that you iterate between
HIGH and LOW signals.

A Piezo is a directional piece, meaning that it has a positive and negative pole. The
positive pole should be connected to the digital output pin that you allocate to
control the piezo and the negative pole should be connected to Ground pin

26

4/22/2016

14

Arduino- Digital Output-Sound-Piezo

27

LED’s Blinking rate using Analog Input
(Potentiometer)

28

4/22/2016

15

Arduino-Analog Output-LED
Analog Out put is defined as sending signals from one of the digital pins on the Aurduino board that range between two extremes:
0-255
Out of 13 Digital pins on Arduino board the following pins can be used to signal out Analog output: 3,5,6,9,10,11

These are the pins with PWM label next to them on the board

29

Arduino-Analog Output-LED

For this exercise since we need to see the light variations , we are going to use a high
intensity LED. High Intensity LEDs emit more light than normal LEDs and it is easier
to detect light variations, using them.

30

4/22/2016

16

Arduino-Analog Output-LED

31

Arduino-Analog Output-LED_Dimming Using Loop Structure

32

4/22/2016

17

Creating a bar graph using LEDs
const int NoLEDs = 8;

const int ledPins[] = { 70, 71, 72, 73, 74, 75, 76, 77};

const int analogInPin = 0; // Analog input pin const int wait = 30;

const boolean LED_ON = HIGH;

const boolean LED_OFF = LOW;

int sensorValue = 0; // value read from the sensor

int ledLevel = 0; // sensor value converted into LED 'bars'

void setup() {

for (int i = 0; i < NoLEDs; i++)

{

pinMode(ledPins[i], OUTPUT); // make all the LED pins outputs

}

} 33

Creating a bar graph using LEDs
void loop() {

sensorValue = analogRead(analogInPin); // read the analog in value

ledLevel = map(sensorValue, 0, 1023, 0, NoLEDs); // map to the number of LEDs

for (int i = 0; i < NoLEDs; i++)

{

if (i < ledLevel) {

digitalWrite(ledPins[i], LED_ON); // turn on pins less than the level

}

else {

digitalWrite(ledPins[i], LED_OFF); // turn off pins higher than the level:

}

}

} 34

4/22/2016

18

Using Serial Communication

Method used to transfer data between two devices.

Arduino dedicates Digital I/O pin # 0 to receiving and Digital I/O
pin #1 to transmit.

Data passes between the computer and Arduino through the USB cable. Data is
transmitted as zeros (‘0’) and ones (‘1’) sequentially.

35

Serial Monitor & analogRead()

Initializes the Serial Communication

9600 baud data rate

prints data to serial bus
36

4/22/2016

19

Serial Monitor & analogRead()
Opens up a Serial Terminal

Window

37

Serial Communication

38

4/22/2016

20

Arduino-Digital Output-Motion-Servo Motor

Servo Motors are electronic devices that
convert digital signal to rotational movement.
There are two sorts of servo motors: Standard
servos that their rotation is limited to
maximum of 180 degrees in each direction and
Continuous Rotation Servos that can provide
rotation unlimitedly in both directions

39

A servo motor is a motor that pulses at a certain rate moving its gear at
a certain angle. It has three connections: the black is ground, the red
is connected to 5V, and the white (yellow wire here) is set to the
digital pin.

Arduino-DigitalOutput-Motion-Servo Motor

Ground

V5

Digital Pin

40

4/22/2016

21

Arduino-Standard Servo Rotation to Exact Angel

41

Arduino-Standard Servo Rotation to Exact Angel
#include <Servo.h>
Servo myservo; // create servo object to control a servo
int pos = 0; // variable to store the servo position
void setup()
{
myservo.attach(9); // attaches the servo on pin 9 to the servo object

}
void loop()
{
myservo.attach(9);
for(pos = 0; pos < 180; pos += 1) // goes from 0 degrees to 180 degrees
{ // in steps of 1 degree

myservo.write(pos); // tell servo to go to position in variable 'pos'
delay(15); // waits 15ms for the servo to reach the position

}
for(pos = 180; pos>=1; pos-=1) // goes from 180 degrees to 0 degrees
{

myservo.write(pos); // tell servo to go to position in variable 'pos'
delay(15); // waits 15ms for the servo to reach the position

}
myservo.detach(); //Detach the servo if you are not controling it for a while
delay(2000);

} 42

4/22/2016

22

Arduino-Controlling Standard Servo with User Input

43

Connecting LCDs

44

4/22/2016

23

Using LCDs
#include <LiquidCrystal.h> // include the library code

//constants for the number of rows and columns in the LCD

const int numRows = 2;

const int numCols = 16;

// initialize the library with the numbers of the interface pins

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup()

{

lcd.begin(numCols, numRows);

lcd.print("hello, world!"); // Print a message to the LCD.

}

45

Using PIR motion sensors

46

4/22/2016

24

Using PIR motion sensors
const int ledPin = 77; // pin for the LED

const int inputPin = 2; // input pin (for the PIR sensor)

void setup() {

pinMode(ledPin, OUTPUT); // declare LED as output

pinMode(inputPin, INPUT); // declare pushbutton as input

}

void loop(){

int val = digitalRead(inputPin); // read input value

if (val == HIGH) // check if the input is HIGH

{

digitalWrite(ledPin, HIGH); // turn LED on if motion detected

delay(500);

digitalWrite(ledPin, LOW); // turn LED off

}
47

Using ultrasonic sensors
The “ping” sound pulse is generated when the pingPin level goes HIGH for two
microseconds.

The sensor will then generate a pulse that terminates when the sound returns.

The width of the pulse is proportional to the distance the sound traveled

The speed of sound is 340 meters per second, which is 29 microseconds per
centimeter. The formula for the distance

of the round trip is: RoundTrip = microseconds / 29

48

4/22/2016

25

Using ultrasonic sensors
const int pingPin = 5;

const int ledPin = 77; // pin connected to LED

void setup()

{

Serial.begin(9600);

pinMode(ledPin, OUTPUT);

}

void loop()

{

int cm = ping(pingPin) ;

Serial.println(cm);

digitalWrite(ledPin, HIGH);

delay(cm * 10); // each centimeter adds 10 milliseconds delay

digitalWrite(ledPin, LOW);

delay(cm * 10); }
49

Using ultrasonic sensors
int ping(int pingPin)

{

long duration, cm;

pinMode(pingPin, OUTPUT);

digitalWrite(pingPin, LOW);

delayMicroseconds(2);

digitalWrite(pingPin, HIGH);

delayMicroseconds(5);

digitalWrite(pingPin, LOW);

pinMode(pingPin, INPUT);

duration = pulseIn(pingPin, HIGH);

// convert the time into a distance

cm = microsecondsToCentimeters(duration);

return cm ;

}

long microsecondsToCentimeters(long microseconds)

50

4/22/2016

26

Audio output
tone(speakerPin, frequency, duration); // play the tone

delay(duration); //wait for the tone to finish

51

Queries

52

4/22/2016

27

53

