PIC Microcontroller and Embedded Systems

Branch, Call and Delay Loop

OUTLINE

- Looping in PIC
- Loop inside loop
- Other conditional jumps
- All conditional branches are short jumps
,
- Unconditional branch instruction

Looping in PIC

- Repeat a sequence of instructions or a certain number of times
- Two ways to do looping
- Using DECFSZ instruction
${ }^{\circ}$ Using BNZXBZ instructions

DECFSZ instruction

Decrement file register, skip the next instruction if the result is equal 0

- DECFSZ fileRef, d
- GOTO instruction follows DECFSZ
- Write a program to a)Clear WREG
- b)Add 3 to WREG ten times and place the result in SFR PORTB

```
                                    COUNT EQU 0×25
                                    MOVLW d'10'
                                    MOVWF COUNT
                                    MOVLW O
AGAIN ADDLW 3
DECFSZ COUNT,F
GOTO AGAIN
MOVWF PORTB
```


Using BNZ \backslash BZ instructions

- Supported by PIC18 families
- Early families such as PIC16 and PIC12 doesn't support these instruction
- These instructions check the status flag

Back

DECF fileReg, f

 BNZBack
Example

Write a program to

- a)Clear WREG
- b)Add 3 to WREG ten times and place the result in SFR PORTB
- Solution

COUNT EQU0x25
MOVLWd'10' MOVWFCOUNT MOVLW 0
AGAIN ADDLW3
DECF COUNT,F

Loop inside a loop

Write a program to
a)Load the PORTB SFR register with the value 55 H
b)Complement PORTB 700times

Solution
R1 EQU0x25
R2 EQU0x26
COUNT_1 EQUd'10'
COUNT_2 EQUd'70'
MOVLW0x55
MOVWFPORTB
MOVLWCOUNT_1 MOVWFR1
LOP_1 MOVLWCOUNT_2 MOVWFR2
LOP_2 COMPFPORTB, F DECFR2, F
BNZLOP_2
DECFR1, F
BNZLOP_1

Other conditional jumps

- All of the 10 conditional jumps are 2-byte instructions
- They requires the target address
- 1 byte address (short branch address)
- Relative address
- Recall: MOVF will affect the status Reg.
- In the BZ instruction, the Z flag is checked. If it is high, that is equal 1 , it jumps to the target address

Flag Bits and Decision Making

BC	k	Branch relative if Carry
BNC	k	Branch relative if Not Carry
BN	k	Branch relative if Negative
BNN	k	Branch relative if Not Negative
BOV	k	Branch relative if Overflow
BNOV	k	Branch relative if Not Overflow
BZ	k	Branch relative if Zero
BNZ	k	Branch relative if Not Zero

Unconditional branch instruction

- Control is transferred unconditionally to the target location (at ROM)
- Two unconditional branches
- GOTO
- BRA

GOTO Instruction

BRA Instruction

1110	Onnn	nnnn	nnnn

$$
-1024 \leq n \leq 1023
$$

Call instruction

CALL Instruction

- Control is transferred to subroutine
- Current PC value, the instruction address just below the CALL instruction, is stored in the stack
- push onto the stack
- Return instruction is used to transfer the control back to the caller,
- the previous PC is popped from the stack

Stack and Stack Pointer (SP)

- Read/Write Memory
- Store the PC Address
- 21-bit (000000 to 1FFFFF)
- 5-bit stack, total of 32 locations
- SP points to the last used location of the stack
- Location 0 doesn't used

Incremented pointer

RCALL (Relative Call)

- 2-Byte instruction
- The target address must be within 2 K
${ }^{\circ} 11$ bits of the 2 Byte is used
- Save a number of bytes.

Delay Calculating for PIC18

- Two factors can affect the accuracy of the delay

1. The duration of the clock period, which is function of the Crystal freq Connected to OSC! And OSC2
2. The instruction cycle duration

- Most of the PIC18 instructions consumes 1 cycle
- Use Harvard Architecture
- Use RISC Architecture
- Use the pipeline concept between fetch and execute

Instruction Cycle time for the PIC

- What is the Instruction Cycle ?
- Most instructions take one or tow cycles
- BTFSS can take up to 3 cycles
- Instruction Cycle depends on the freq. of oscillator
- Clock source: Crystal oscillator and on-chip circuitry
- One instruction cycle consists of four oscillator period

Example

- Find the period of the instruction cycle you chose 4 MHz crystal? And what is required time for fetching an instruction?
- Solution
$4 \mathrm{MHz} / 4=1 \mathrm{MHz}$
Instruction Cycle $=1 / 1 \mathrm{MHz}=1$ usec
Fetch cycle $=4 * 1$ usec $=4$ usec

Example

Find how long it take to execute each of the following instructions for a PIC18 with 4 MHz

- MOVLW
- ADDLW
- CALL
- DECF
- GOTO
- NOP
- BNZ
- MOVWF

Delay calculation for PIC1 8Example

- Find the size of the delay in the following program if the crystal freq. is 4 MHz .

DELAY MOVLW0xFF
MOVWFMYREG
AGAIN NOP
NOP
DECFMYREG, F
BNZAGAIN
RETERN

Example

MYREGEQU0x08 ORGO
BACK MOVLW 0x55 MOVWF PORTB CALL DELAY MOVLW OXAA MOVWF PORTB CALL DELAY GOTO BACK

ORG 300H
DELAY MOVLW 0xFA MOVWF MYREG
AGAIN NOP
NOP
NOP DECF MYREG, F BNZ AGAIN

