PART 3= —=

Data Link Laver

e data link layer lies between the network layer and the physical layer in the Intermet
madel. Tt receives services from the physical layer and provides services to the network
layer. Figure | shows the position of the data link layer in the Internet model.

Figure 1 Position of data fink laver

Packetizimg I

Flova comdrol

Error condrol

The data link layer is responsible for carrving a packet from one hop (computer
or router) to the next hop. Unlike the network laver which has a global responsibility,
the data link layer has a local responsibility. Its responsibility lies between two hops. In
other words, because LANs and WANSs in the Intermet are delimited by hops, we can
=ay that the responsibility of the data link layer is to carry a packet through a LAN
or WAN,

The joumey through a LAN or a WAN (between two hops) must preserve the integ-
rity of the packet: the data link layer must make sure thal the packet arrives safe and
sound, If the packet is corrupted during the transmission, it must either be corrected or
retransmitted. The data link laver must also make sure that the next hop is not over-
whelmed with data by the previous hop: the flow of data must be controlled.

Access o a LAN or a WAN for the sending of data is also an issue. IT several com-
puters or routers are connected to a common medium (link), and more than one want to
send data at the same time, which has the right to send? What is the access method?

PART 3 DATA LINK LAYER 241

allowed 1o overwhelm the receiver. The receiving device must be able to inform the
sending device before some himit is reached and request that the transmitting device
send fewer frames or stop temporarily. We discuss flow control as part of data link
control in Chapter 11.

Medium Access Conirol

When computers use a shared medium (cable or air), there must be a method 1o control
access 1o the medium at any moment. To prevent this conflict or collision on a network,
there is a need for a medium access control (MAC) method. This method defines the
procedure a computer follows when it needs o send a frame or frames. We devote two
chapters to this issue. Chapter 12 and Chapter 13.

Local Area Networks

Local Area Networks (LANs) operate at the physical and data link layer. The obvious
place to discuss local area networks is after these lavers have been discussed. We have
devoted Chapter 14 to Ethernet, the most common LAN today and Chapter 15 1o wire-
less LANs, the most promising LAN today. After discussing these two subjects, we
show how to connect LANs in Chapter 6.

TEEE Standards

The Internet does not spell out specifications for LANs or WANs. The Internet accepts
any LAN as a communications pathway for transferring its network layer packet. There
must other protocols to handle LANs, In 1985, the Computer Society of the IEEE
started a project, called Project 802, to set standards to enable intercommunication
between equipment from a vanety of manufacturers. The IEEE has subdivided the data
link layer into two sublayers: logical link control (LLC) and media access control
(MAC) as shown in Figure 3. The LLC is nonarchitecture specific: that is. it is the same
for all IEEE-defined LANs. It is not widely used today. The MAC sublayer, on the
other hand, contains a number of distinct modules; each carries proprietary information
specific to the LAN product being used. Figure 4 shows some IEEE 802 siandards
defined for specific LANS,

Figure 3 LLC and MAC sublayers

Medin pecess

contral { MAC)

: Dot Timk fayer
Logical link

ool {LLLCT)

Physical layer Phvsical Layer

.

IEEE standard Inlernet model

PART 3 DATA LINK LAYER 241

allowed 1o overwhelm the receiver. The receiving device must be able to inform the
sending device before some himit is reached and request that the transmitting device
send fewer frames or stop temporarily. We discuss flow control as part of data link
control in Chapter 11.

Medium Access Conirol

When computers use a shared medium (cable or air), there must be a method 1o control
access 1o the medium at any moment. To prevent this conflict or collision on a network,
there is a need for a medium access control (MAC) method. This method defines the
procedure a computer follows when it needs o send a frame or frames. We devote two
chapters to this issue. Chapter 12 and Chapter 13.

Local Area Networks

Local Area Networks (LANs) operate at the physical and data link layer. The obvious
place to discuss local area networks is after these lavers have been discussed. We have
devoted Chapter 14 to Ethernet, the most common LAN today and Chapter 15 1o wire-
less LANs, the most promising LAN today. After discussing these two subjects, we
show how to connect LANs in Chapter 6.

TEEE Standards

The Internet does not spell out specifications for LANs or WANs. The Internet accepts
any LAN as a communications pathway for transferring its network layer packet. There
must other protocols to handle LANs, In 1985, the Computer Society of the IEEE
started a project, called Project 802, to set standards to enable intercommunication
between equipment from a vanety of manufacturers. The IEEE has subdivided the data
link layer into two sublayers: logical link control (LLC) and media access control
(MAC) as shown in Figure 3. The LLC is nonarchitecture specific: that is. it is the same
for all IEEE-defined LANs. It is not widely used today. The MAC sublayer, on the
other hand, contains a number of distinct modules; each carries proprietary information
specific to the LAN product being used. Figure 4 shows some IEEE 802 siandards
defined for specific LANS,

Figure 3 LLC and MAC sublayers

Medin pecess

contral { MAC)

: Dot Timk fayer
Logical link

ool {LLLCT)

Physical layer Phvsical Layer

.

IEEE standard Inlernet model

Wide Area Networks

Wide Area Networks (WANs) also operate in the physical and data link layer
discussed in this part of the text. We discuss the mobile telephone systems an
lites, as wireless WANSs, in Chapter 17. We discuss Frame Relay and ATM as sy
WANSs in Chapter 18.

Chapters

Part 111 of the book covers nine chapters 10-18. Chapters 10-13 discuss general s
is about error detection, a prelude o ermor control. Chapter 11 1s about flow and en
trol. Chapter 12 explains media access control for point-to-point connections. Che
dhoes, the same for multiple access connections.

Chapters 14 1o 16 are devoted 10 LANs. Chapter 14 discuss the most ¢
AN, Ethernet. Chapter 15 discusses wireless LANs. Chapter 16 discusses the ¢
tion of LANs.

Chapters 17 and 18 are devoted 1o WANs. Chapter 17 is about wireless '
mohile telephone networks and satellite networks. Chapter 18 is about sw
WANs, Frame Relay, and ATM.

Copyrighted material

Error Detection and
Correction

Networks must be able 1o transfer data from one device to another with complete accu-
racy. A system that cannot guarantee that the data received by one device are identical to
the data transmitted by another device is essentially useless. Yet anytime data are trans-
mitted from one node 1o the next, they can become comrupted in passage. Many factors
can alter or wipe oul one or more bits of a given data unit. Reliable systems must have a
mechanism for detecting and comecting such errors.

R R T T AL

10.1 TYPES OF ERRORS

Whenever bits flow from one point to another, they are subject to unpredictable
changes because of interference. This interference can change the shape of the signal.
In a single-bit error, a 0 is changed to a | ora 1 to a 0. In a burst error, multiple bits are
changed. For example, a 0.01-s burst of impulse noise on a transmission with a data
rate of 1200 bps might change all or some of 12 bits of information.

Single-Bit Error

The term single-bit error means that only one bit of a given dats unit (such as a byte,
character. data unit, or packet) is changed from 1 to 0 or from 0 to 1.

Figure 10.1 shows the effect of a single-bit ermor on a data unit. To understand the
impact of the change, imagine that each group of 8 bits is an ASCII character with a 0 bit
added to the left. In the figure, (0000010 (ASCII §TX) was sent, meaning start of fext,
but 00001010 (ASCII LF) was received, meaning fine feed. (For more information
about ASCII code, see Appendix A.)

Copyrighted material

244 CHAFPTER 10 ERROR DETECTION AND CORRECTION

Figure 10,1 Singic-bit error

{i changed o |

||J|n|m|ﬂE§n|1Eﬂ|—-—|n|:riu|nfﬂ]u[| 0]

Receivexd

Single-bit errors are the least likely type of error in serial data transmission. To
understand why. imagine a sender sends data st | Mbps. This means that each bit lasts
only 171,000,000 s, or | ps. For a single-bat error to occur, the noise must have a dura-
tion of only 1 ps, which is very rare; noise normally lasts much longer than this,

However, a single-bit error can happen if we are sending data using parallel trans-
mission. For example, if eight wires are used 10 send all 8 bits of | byte at the same
time and one of the wires is noisy, one bit can be corrupted in cach byte, Think of parallel
transmission inside a computer, between CPL and memory, for example.

Burst Error

The term burst error means that 2 or more bats in the data unit have changed from | 1o 0
or from 0o 1.

Figure 10.2 shows the effect of a burst error on a data unit, In this case,
OLOOOTOCO 1M | was sent, but 0101 110101000011 was received. Note that a burst
error does not necessarily mean that the errors occur in consecutive bits. The length of
the burst is measured from the first corrupted bit to the last corrupted bit. Some bits in
between may not have been corrupted. A

Figure 10.2 Burst error af length 5

Lengih of bursi
.tl'l'tlﬁj- b=}
B ————

[o]1[ofofo]r[ofofol1[ofofolo]e]1]
+ Blucmnqxtdhvhwumw

|u|:|uhLH] [u]_]u| [ofo]o]o]1]1]

Recerves

Burst error is most hkely o occur in a serial transmission. The duration of noise is
normally longer than the duration of one bit, which means that when noise affects data,
it affects a set of bits. The number of bits affected depends on the data rate and duration
of noise. For example, if we are sending data at 1 Kbps, a noise of 1/100 s can affect
10 bits; if we are sending data at 1 Mbps, the same noise can affeet 10,000 bits.

SECTION 10.2 DETECTION 245

10.2 DETECTION

Although the goal of error checking is 10 cormeet errors, most of the time, we first need
to detect errors. Error detection is simpler than error correction and is the first step in
the error correction process.

Redundancy

One error detection mechanism would be 1o send every data unit twice. The receiv-
ing device would then be able 1o do a bit-for-bit comparison between the two versions
of the data. Any discrepancy would indicate an error, and an appropriate comection
mechanism could be set in place. This system would be completely accurate (the
odds of errors being introduced onto exactly the same bits in both sets of data
are infinitesimally small), but it would also be insupportably slow. Not only would the
transmission time double. but also the time it takes to compare every unit bit by bit
must be added.

The concept of including extra information in the transmission for error detection
is a good one. But instead of repeating the entire data stream, a shorter group of bits
may be appended to the end of each unit. This technigue is called redundancy because
the extra bits are redundant to the information; they are discarded as soon as the accu-
racy of the transmission has been determined.

e comcegt. of reduadancy, which
%‘J%‘qt#-ﬂﬂ‘ﬂ 3 1,_-"-.-\-. "L-«..?.-':.'i"-r::.,.

Figure 10.3 shows the process of using redundant bits 1o check the accuracy of a
data unit. Once the data stream has been generated, it passes through a device that ana-
lyzes it and adds on an appropriately coded redundancy check. The data unit, now
enlarged by several bits, travels over the link to the receiver. The receiver puts

Figure 10.3 Redundancy

Receiver node Semder mode
| 10HO00000 161010 | Pt D] 101000000101 010 |
TY¥eu
Repoct data
Ni
| 10100000000101010 1011101} | EGON0001 01010 (1011 101)
Duta & r Dhatn &

246 CHAPTER I ERROR DETECTION AND CORRECTION

the entire stream through & checking function. If the received bit stream passes the
checking cniteria, the data portion of the data unit is accepted and the redundant bits
are discarded.

Three types of redundancy checks are commaon in data communications: parity
check. cyclic redundancy check (CRC). and checksum (see Fig. 10.4).

Figure 104 Detection methods

Dhsiectbon methusds ‘

T Crvelie
Parity check redundancy check I Checksum

Parity Check

The most common and least expensive mechanism for error detection 1s the parity
check. Panity checking can be simple or two-dimensional.

Simple Parity Check

In this technigue, a redundant bit, called a parity bit, is added 1o every data unit so that
the total number of 18 in the unit (including the parity bit) becomes even (or odd). Sup-
pose we want to transmit the binary data unit 1100001 [ASCIL a (97)]: see Figure 10.5.

Figure 10.5 Even-parity concept

Beceiver nosde Senider pode
DN ety (1100001
bt it ool date A
Dhiita
| Refect IJ\Y'-"F
| dama s ™
Even™
5]
1 |
Iits purity bil |
| 1
Hits i | _||wm=1

SECTION 10.2 DETECTION 247

Adding the number of |5 gives us 3, an odd number. Before ransmitting. we pass the
data unit through a parity generator. The parity generator counts the 1s and appends the
parity bit (a 1 in this case) o the end. The total number of 1s is now 4, an even number.
The system now transmits the entire expanded unit across the network link. When it
reaches its destination, the receiver puts all 8 bits through an even-parity checking func-
tion. If the receiver sees 11000011, it counts four 15, an even number. and the data unit
passes. But what if the data unit has been damaged in transit? What if, instead of
11000011, the receiver sees 110010117 Then when the parity checker counts the 1s, it
gets 5, an odd number. The receiver knows that an error has been introduced into the data
somewhere and therefore rejects the whole unit. Note that for the sake of simplicity, we
are discussing here even-parity checking. where the number of 1s should be an even
number. Some systems may use odd-parity checking, where the number of 1s should be
odd. The principle is the same.

In parity check, o parity bit is added to every duta unit so that the total number of 1s is
even (or odd for edd-parity),

Example 1

Suppose the sender wants 1o send the word world. In ASCI (see Appendix A, the five charac-
ters are coded as

‘h 11190111 1101111 1110010 114911900 1100100

" & £ 1 d

Each of the first four characiers has an even number of Is, so the parity bit is a 0. The last charac-
ter (d), however, has three s (an odd number?, so the parity bit is a 1 1o make the total number of
15 even. The following shows the actual bits sent {the parity bits are underlined).

h 11100118 I12l111l0 11I90i0g 110ll1l0af] 1100l0ul

Example 2

Now suppose the word world in Example | s received by the receiver without being corrupled in
Iransmission.

e 11101110 11011110 11100100 11011000 11001001

The receiver counts the |5 in each characier and comes up with even numbers (6, 6, 4, 4, 4). The
data are accepted.

Example 3
Mow suppose the word werld in Example | s comupted dunng transmission,
o 11111110 11011110 11101100 11011000 11001001

The recerver counts the 1s mn each character and comes up with even and odd numbers (7, 6, 5,
4, 4). The receiver knows that the data are cormupted, discards them, and asks for retransmission.

28 CHAPTER I} ERROR DETECTION AND CORRECTION

Performance

Simple panty check can detect all single-bat errors. [t can also detect burst emmors as long as
the total number of bits changed is odd (1, 3, 5, etc.). Let’s say we have an even-parity data
unit where the iotal number of 1=, including the parity bir, is 6 1000111011, If anv 3 bits
change value, the resulting parity will be odd and the emor will be detected: 177711101 1:9,
G IOTL 10017, LIOO21001 1:5—all odd. The checker would return a result of 1, and the
data unit would be rejected. The same holds true for any odd number of errors.

Suppose, however, that 2 bits of the data unit are changed: 1/70111011:8,
L0021 10T 1:6, 1O 1010:4, In each case the number of 1s in the data unit is still
even. The parity checker will add them and return an even number although the data
unit contains two errors. This method cannot detect errors where the total number of
bits changed is even. If any two bits change in transmission, the changes cancel each
other and the data unit will pass a parity check even though the data unit is damaged.
The same holds true for any even number of errors.

Iwo-Dimensional Parity Check

A better approach is the two-dimensional parity check. In this method, a block of bits
1s organized in a table (rows and columns). First we calculate the parity bit for each
data unit. Then we organize them into a table. For example, as shown in Figure 1006,
we have four data units shown in four rows and eight columns. We then calculate the
parity bit for each column and create a new row of & bits: they are the parity bits for the
whole block. Note that the first parity bit in the fifth row is calculated based on all first

Figure 16 Two-dimensional parire

Omiginal data
(100010 1 E101 011001 0101001 |
R LT N S T O B

T R g %
——0 1 & 1 0o ©o 1)]jo E
o L T R P T QI §

I—I': 1 @ 1 @ 1 0] Coumnpanties

L L 1 1
e | JMI00 BONDDON] ODDIOOI0 OIHDOED DIOI0ND] |
Draia omadl parity bies

SECTION 10.2 DETECTION 249

bits; the second parity bit is calculated based on all second bits: and so on. We then
attach the & parity bits to the original data and send them to the receiver.

Example 4
Suppose the following block is sent:
o 10101001 00111001 11011101 11100111 10101010
However, it is hil by a burst noise of length 8, and some bils are cormupted.
s 10100071 10001001 11011101 11100111 10101010

When the receiver checks the parity bits, some of the bits do not follow the even-parity rule and
the whole block is discarded (the nonmatching bits are shown in bold).

o (100011 0001001 11011101 11100111 210101010

{paricty bits)

In two-dimensional parity check, a block of bits is divided into rows and a redundant
row of hits is added to the whole hlock.

Performance

Two-dimensional parity check mereases the likelihood of detecting burst emors, As we
showed in Example 4, a redundancy of n bits can easily detect a burst emror of n bits.
A burst error of more than o bits 1s also detected by this method with a very high proba-
bility. There is, however, one pattern of ermors that remains elusive. If 2 bils in one data
unit are damaged and two bits in exactly the same positions in another data unit are
also damaged, the checker will not detect an ermor, Consider, for example, two data units:
1EETO000 and 1100001 1. If the first and last bits in each of them are changed, making the
data units read 01110007 and 0100014, the errors cannot be detected by this method.

Cyclic Redundancy Check (CRC)

The third and most powerful of the redundancy checking techmiques is the cyclic
redundancy check (CRC). Unlike the parity check which is based on addition, CRC is
based on binary division. In CRC, instead of adding bils to achieve a desired parity, a
sequence of redundant bits, called the CRC or the CRC remainder, 1s appended 1o the
end of a data unit so that the resulting data unit becomes exactly divisible by a second,
predetermined binary number. At its destination, the incoming data unit is divided by
the same number. If at this step there is no remainder, the data unit is assumed to be
intact and is therefore accepted. A remainder indicates that the data unit has been dam-
aged in transit and therefore must be rejected.

The redundancy bits used by CRC are derived by dividing the data unit by a prede-
terminéd divisor; the remainder is the CRC. To be valid, a CRC must have two guali-
ties: It must have exactly one less bit than the divisor, and appending it to the end of the
data string must make the resulting bit sequence exactly divisible by the divisor.

Both the theory and the application of CRC error detection are straightforward.
The only complexity is in deriving the CRC. To clarify this process. we will stant with

50 CHAPTER 10 ERROR DETECTION AND CORRECTION

an overview and add complexity as we go. Figure 10.7 provides an outline of thy
basic steps.

Figure 10.7 CRC generator and checker

Zero, pcoepl
INonzem, reject

Receiver Semler

Firsy, a string of n Os 15 appended to the data unit. The number m is | less th
number of bits in the predetermined divisor, which 15 n + | bits.

Second, the newly elongated data unit is divided by the divisor, using a p
called binary division. The remainder resulting from this division is the CRC.

Third, the CRC of n bits derived in step 2 replaces the appended (s at the
the data unit, Note that the CRC may consist of all Os.

The data unit arrives al the receiver data first, followed by the CRC. The rc
treats the whole string as a umit and divides it by the same divisor that was used
the CRC remainder.

If the string arrives without error, the CRC checker vields a remunder of ze
the data unit passes. If the string has been changed in transit, the division vields
zero remainder and the data unit does not pass,

The CRC Generator

A CRC generator uses modulo-2 division. Figure 100X shows this process, In il
step. the 4-bit divisor is subtracted from the first 4 bits of the dividend, Each bit
divisor is subtracted from the comesponding bit of the dividend without disturbg
nexi-higher bit. In our example, the divisor, 1101, 15 subtracted from the first 4
the dividend, 1001, yielding 100 (the leading 0 of the remainder is dropped). Tt
unused bit from the dividend is then pulled down 1o make the number of bits
remainder equal to the number of bits in the divisor. The next step, therefore, 1s
1101, which yields 101, and so on.

In this process, the divisor always begins with a 1: the divisor is subtracted
portion of the previous dividendfremainder that is equal 1o it in length; the divis
only be subtracted from a dividendremainder whose lefimost bit is 1. Anyume tl
most bit of the dividend/remainder 15 0, a string of Os, of the same length as the ¢
replaces the divisor in that step of the process. For example. if the divisor is 4 bits
is replaced by four Os. (Remember, we are dealing with bit patterns. not with quan
values: (000 is not the same as (1.) This restriction means that, at any step, the le

SECTION 10.2 DETECTION 151

Figure 10.8 Rinary division in @ CRC generator

Cheatient
11110l i
i Draza plus
Divisor 1 101)1 00 1 00000
1101} Sty
1000
P10l
L O F o
ili]lr
1 01
— i1 1oi
of the remainder is zem., -
wie sy use D000 knstesd II-I.'II"
of the origimal divisor, 1100
- [|
R::rmmd-:f

subtraction will be either 0 =0 or | = 1, both of which equal 0. So, afier subtraction, the
leftmost bit of the remainder will always be a leading zero, which is dropped., and the
next unused bit of the dividend is pulled down to fill out the remainder. Note that only
the first bit of the remainder is dropped—if the second bit is also 0, it is retained. and the
dividend/remainder for the next step will begin with 0. This process repeats until the
entire dividend has been used.

The CRC Checker

A CRC checker functions exactly as the generator does. After receiving the data
appended with the CRC, it does the same modulo-2 division. If the remainder is all Os,
the CRC is dropped and the data are accepted; otherwise, the received stream of bits is
discarded and data are resent. Figure 10.9 shows the same process of division in the
receiver. We assume that there is no error. The remainder is therefore all Os, and the
data are accepted.

Polynomials

The divisor in the CRC generator is most often represented not as a string of 1s and Os,
but as an algebraic polynomial (see Fig. 10.10). The polynomial format i1s useful for
two reasons: It is shon, and it can be used to prove the concept mathematically {which
is beyond the scope of this book).

The relationship of a polynomial to its corresponding binary representation is
shown in Figure 10,11,

A polynomial should be selected to have at least the following properties:
B It should not be divisible by x.

B It should be divisible by x + 1.

252 CHAPTER 10 ERROR DETECTION AND CORRECTION

Figure 10.9 Binary division in CRC checker

Quotient
I111ol
g Diata plas
Divisor 1101 10010000 1+— 2APH
III]EII
1000
1101
1010
1141
11160
1013
When the lefimost ba 0110
of the remainder is zero, B000
wie e wse D000 knspesd ¥
of the original divisor, 1 1@l
1o
00 Rrewn

Figure 10,10 A pedvnomial

Figure 10,11 A polvaonial representing o divisor

Foalymomanl
(Ferferterst)

I LI |

[hvisor

The first condition guarantees that all burst errors of a length equal to the degree of
the polynomial are detected. The second condition guarantees that all burst errors affect-
ing an odd number of bits are detected (the proof is beyond the scope of this book).

Example 5
It is obvious that we cannot choose x (hinary Iﬂiur_r:+r['bi|1m 110} as the polynomial because
both are divisible by x. However, we can choose x+ 1 (hinary | 1) because it is not divisible by v,

s i b i e et i |
OpY! IO Nied makerial

SECTION 10.2 DETECTION 253

but is divisible by x + 1. We can also choose x* + | (binary 101) because it is divisible by x + 1
{binary division}.

Standard Polynomials

Some standard polynomials used by popular protocols for CRC generation are shown
in Table 10.1.

Table 10,1 Standard podvromials

Name Polynowmial Application
CRC-8 P e x4 ATM header
CRC-10 | a4+ 0+ 0+x° 41 ATM AAL
ITU-16 | P +xP 0+ 1 HDLC
FTL-32 o +._I.'5+IB e kTl T A.'E + LANs

Parer+tedex+

Performance
CRC is a very effective error detection method. If the divisor is chosen according to the
previously mentioned rules,
1. CRC can detect all burst ermors that affect an odd number of bits.
2. CRC can detect all burst errors of length less than or equal to the degree of the
polynomial,
3. CRC can detect, with a very high probability, burst errors of length greater than the
degree of the polynomial.

Example 6

The CRC-12 (" + £'" + &' + 1 + 1), which has a degree of 12, will detect all burst errors affect-
ing an odd number of bits, will detect all burst errors with a length less than or equal to 12, and
willd-e'lm:t,W.Wp:mtufﬂmﬁmc,htnlmmuﬂhalmphuﬂlurmt-

Checksum

The third error detection method we discuss here is called the checksum. Like the parity
checks and CRC, the checksum is based on the concept of redundancy.

Checksum Generafor

In the sender. the checksum generator subdivides the data unit into equal segments of
ri bits {usually 16). These segments are added using ones complement arithmetic
isee Appendices B and E) in such a way that the total is also # bits long. That total
(sum) is then complemented and appended to the end of the original data unit as
redundancy bits, called the checksum field. The extended data unit is transmitied
across the network. So if the sum of the data segment is T, the checksum will be =T
(see Figs. 10.12 and 10.13).

254 CHAPTER) ERROR DETECTHION AND CORRECTION

Figure 10,12 Checksum

£
:
B

mnﬂ&mmm

B The unit is divided into k sections, each of # bits,

] Aﬂmﬁ:umaﬁdtﬁﬂmemqﬂumntmg&tum
M The sum is complemented and becomes the checksum.

W The checksum is sent with the data.

Checksum Checker

The receiver subdivides the data unit as above and adds all segments and complements
the result. If the extended data unit is intact, the total value found by adding the data

The receiver Tollows these steps:

B The unit is divided into & sections, each of n bits.

B All sections are added using ones complement 1o get the sum.

B The sum is complemented.

W If the result is zero, the data are accepted: otherwise, they are rejected,

SECTION 10.2 DETECTION 155

segments and the checksum field should be zero. If the result is not zero, the packet
contains an error and the receiver rejects it (see Appendix E).

Example 7
Suppose the following block of 16 bits is 0 be sent using & checksum of § bits,

e 0101001 00111001
The numbers are added using ones complement arithmetic (see Appendix E).

10101001
01 1 1001
Sum 1110
Checksum 0001 1101
The pamtermn sent is
e 10101001 00111001 00011101
Checksum
Example 8

Mow suppose the receiver receives the pattern sent in Example 7 and there is no ermor.
10101001 00111001 0©0011101

When the receiver adds the three sections, it will get all 1s, which, afier complementing, is all Os
and shows that there is no error.

10101001
(LURRLLH
00011101
Sum Py
Complement QOOOOOBG means that the pattern is OK.

Example 9
Mow suppose there is a burst ermor of length 5 that affects 4 bits.

101031011 11111001 O0011101
When the receiver adds the three sections. it gets

110111
ARRRLLY
0001 1101
Resuli (I L)
Carry 1
Sum 110001 10

Complement LR mesns that the patterm s cormupited,

Performance

The checksum detects all errors involving an odd number of bits as well as most
ermors involving an even number of bits. However, if one or more bits of a segment are

156 CHAPTER 10 ERROR DETECTION AND CORRECTION

damaged and the corresponding bit or bits of opposite value in a second segment are
also damaged, the sums of those columns will not change and the receiver will not
detect a problem. If the last digit of one segment is a 0 and it gets changed toa | in
transit, then the last 1 in another segment must be changed to a 0 if the error is to go
undetected. In two-dimensional parity check, two (s could both change 10 1s without
altering the parity because carries were discarded. Checksum retains all carries; so
although two (s becoming 15 would not alter the value of their own column, 1t would
change the value of the next-higher column. But anytime a bit inversion is balanced
by an opposite bit inversion in the corresponding digit of another data segment, the
error is invisible.

10.3 ERROR CORRECTION

The mechanisms that we have discussed up to this point detect errors but do not comrect
them. Error correction can be handled in several ways. The two most commaon are
error cormection by retransmission and forward error comection.

Error Correction by Retransmission

In error correction by retransmission, when an error 15 discovered. the receiver can
have the sender retransmit the entire data umit. Thas tvpe of eérror correction is discussed
along with flow and error control protocols in Chaprer 11.

Forward Error Correction

In forward error correction (FEC), a receiver can use an error-cormrecting code., which
automatically comects certain errors. In theory, it is possible to correct any errors auto-
matically. Error-correcting codes, however. are more sophisticated than error detection
codes and require more redundancy bits.

The concept underlying error correction can be most easily understood by examin-
g the simplest case: single-bit errors. As we saw earlier, single-bit errors can be
detected by the addition of a redundant (parity) bit. A single additional bit can detect
single-hit errors in any sequence of bits because it must distinguish between only two
conditions: error or no error. A bit has two states (0 and 1). These two states are suffi-
cient for this level of detection.

But what if we want to correct as well as dewect single-bit errors? Two states are
enough to detect an error but not to correct it. An ermor occurs when the receiver reads a
I bit as a 0 or a 0 bit as a 1. To correct the error, the receiver simply reverses the value
of the aliered bit. To do so, however, it must know which bit is in error, The secret of
ermor correction, therefore, 1s 1o locate the mvalid bit or bats.

For example, to comect a single-bit ermor in an ASCI character, the emmor comec-
tion code must determine which of the 7 bits has changed. In this case, we have o dis-
tinguish between eight different states: no emror, error in position |, emor in position 2,

SECTION [0.3 ERROR CORRECTION 157

and so on. up to error in position 7. To do so requires enough redundancy bits 1o show
all eight states.

At first glance, it seems that a 3-bit redundancy code should be adequate because
3 bits can show eight different states (000 to 111) and can therefore indicate the loca-
tions of eight different possibilities. But what if an ermor occurs in the redundancy bits
themselves? Seven bits of data (the ASCII character) plus 3 bits of redundancy equals
10 bits. Three bits, however, can identify only eight possibilities. Additional bits are
necessary o cover all possible error locations.

To calculate the number of redundancy bits r required to comect a given number of
data bits m, we must lind a relationship between m and r. With m bits of data and r bits
of redundancy added 1o them, the length of the resulting code is m + r.

If the wtal number of bits in a transmittable unit is m + r, then r must be able o
indicate at least m + r+ | different states. Of these, one state means no error, and m + r
states indicate the location of an error in each of the m + r positions.

S0 m + r+ | states must be discoverable by r bits; and r bits can indicate 2" differ-
ent states. Therefore, 2" must be equal to or greater than m + r+ |:

Yr=mi+r+l

The value of r can be determined by plugging in the value of m (the original length
of the data unit to be transmitted). For example, if the value of m is 7 (as in a 7-bit
ASCII code). the smallest r value that can satisfy this equation is 4:

PouTrd+l
Table 10.2 shows some possible m values and the corresponding r values.

Table 10.2 Relationship berween data and redundaney birs

Number of Data Bits | Number of Redundancy Bits | Total Birs
m r m+r
1 2 3
2 3 5
3 3 6
4 3 7
5 4 g
6 4 10
7 4 11

Hamming Code

Hamming provides a practical solution. The Hamming code can be applied 1o data units
of any length and uses the relationship between data and redundancy bits discussed
above. For example, a 7-bit ASCII code requires 4 redundancy bits that can be added
the end of the data unit or interspersed with the original data bits. In Figure 10,14, these
bits are placed in positions 1, 2, 4, and 8 (the positions in an 1 1-bit sequence that are pow-
ers of 2). For clarity in the examples below, we refer to these bits as ry, rp, ry, and rg.

IS8 CHAPTER [0 ERROR DETECTION AND CORRECTION

Figure 10,14 Positions of redundancy bits in Hamming code

I N ;) B 7 L] 3 4 3

s
it

d | a | da|lm]| @ | a|d]|]d|lnln

In the Hamming code. each r bit is the panty bit for one combination of data bits,
as shown below:

F bits 1.3, 5, 7.9, 11
. bits 2. 3.6, 7. 10, 11

Fy bits 4, 5. 6,7
Fg: bits B, 9 10, 11
Each data bit may be included in more than one calculation. In the sequences
above, for example, each of the original data bits is included in at least two sets, while
the r bits are included in only one (see Fig. 10.15).

Figure 10.15 Redundancy bits calculation

r will iake care of these ks

1 4 7 5 3 |
d[afamlaa]aa]« = NS
ry will 1ake care of these bits.

110 T 6 i 3

dafa[R alala[a]«a N]

ry will take care of these bits,

7 i 5 4

(e el I« [« [« W< Ta =
r will 1ake care of these bits.

m w9]

dd]d d|d|da|em]|a|n|n|

Calculating the r Values Figure 10.16 shows a Hamming code implementation for
an ASCII character. In the first step, we place each bit of the onginal character in its
appropriate position in the 11-bit unit. In the subsequent steps. we calculate the even
parities for the various bit combinations. The parity value for each combination is the
value of the corresponding r it

Error Detection and Correction Now imagine that by the time the above transmis-
ston is received. the number 7 bit has been changed from 1 to 0. The receiver takes the

SECTION 10.3 ERROR CORRECTION 159

Figure 10.16 Example of redundancy bit caleulation

hwta:
iomi11@1

L1]o]o
i mw 9]

Adsing [T T o T
11 m % §

| —
Addimgry | 1 [0] o |]

m m 9 K
Addingrs | 1 [0 Jo [o]
inmws & 3
| N T
Addingng [1 To TO T 1 [0 [1 [0 000 1 ol Code:
11 18 % 8 7 & 5 4 3 2z 1 lagitiominl

transmission and recalculates 4 new parity bits, using the same sets of bits used by
the sender plus the relevant parity r bit for each set (see Fig. 10.17). Then it assembles the
new parity values into a binary number in order of r position (rg, ry, r2. rq). In our
example, this step gives us the binary number 0111 {7 in decimal), which is the precise
location of the bit in error.

Figure 10.17 Error detecrion using Hamming code

Cormupied
t

LI 1 0o

10000000800

Ooononononon

Wnlltu]lh[n]ll

-

L
S

The bit in position 7 i in ermor. 7

_—
=

Once the bit is identified, the receiver can reverse its value and correct the error.
The beauty of the technique is that it can easily be implemented in hardware and the
code is corrected before the receiver knows about it.

260 CHAPTER 10 ERROR DETECTION AND CORRECTION

Burst Error Correction

Although the Hamming code cannot cormect a burst error directly, it is possible 1o rear-
range the data and then apply the code. Instead of sending all the bits in a data unit
together, we can organize N units in a column and then send the first bit of each, fol-
lowed by the second bit of each, and so on, In this way. if a burst error of M bils occurs
{M < N), then the error does not corrupt M bits of one single unit: it corrupts only 1 bit
of a unit. With the Hamming scheme, we can then correct the corrupted bit in each
unit. Figure 10.18 shows an example.

Figure 10.18 Burst ervor correction example

Error == THINN001T FLEE 1000611
Frror —= 1000011001 RLUTTIAERES
RRRRRTCINTLTY RARNRICHNL
Ervor —= GIPSDII001 1 oroon o
Eror —= OHNOIONG [a——
S— T T i 8 i o110
Received data E E i é Data hefore heing sem
3 1Qisrionn
3 % i
LE. o i RERY

[rafn im ransitson

In Figure 10.18 we need to send six data units where each unit is a character with
Hamming redundant bits. We organize the bits in columns and rows. We send the first
column, then the second column, and so on. The bits that are corrupted by a burst error
are shown in squares. Five consecutive bits are corrupted durning the actual transmis-
sion. However, when these bits arrive atl the destination and are reorganized into data
units, each corrupted bit belongs to one unit and 15 auomatically corrected. The trick
here is to let the burst error corrupt only 1 bit of each unit,

10.4 KEY TERMS

baurst error SITOr COrrection

checksum error cormection by retransmission
CRC checker error detection

CRC generator even parity

cyclic redundancy check (CRC) forward error commection

Error Hamming code

SECTION 10.6 PRACTICE SET 161

odd party polynomial

one’s complement redundancy

parity bit single-bit error

parity check two-dimensional party check

10,5 SUMMARY

=

0 OO0 00 DO

0 0 OLC

Errors can be categonzed as a single-bit error or a burst error. A single-bit error
has one bit error per data unit. A burst error has two or more bil errors per data
unit.

Redundancy is the concept of sending extra bits for use in error detection.

Three common redundancy methods are parity check. cyelic redundancy check
{(CRC), and checksum,

An extra bit (parity bit) is added to the data onit in the parity check.

The parity check can detect only an odd number of errors: it cannot detect an even
number of errors,

In the two-dimensional parity check, a redundant data unit follows » data units.
CRC, a powerful redundancy checking technigue. appends a sequence of redundant
hits derived from binary division to the data unit.

The divisor in the CRC generator is often represented as an algebraic poly-
nomial.

Errors are corrected through retransmission and by forward error correction.

The Hamming code is an error comection method using redundant bits. The number
of bits 15 a function of the length of the data bits.

In the Hamming code, for a data unit of m bits, use the formula 2" >=m+ r+ 1 1o
determine r, the number of redundant bits needed,

By rearranging the order of bit transmission of the data units, the Hamming code
cin correct burst errors.

10.6 PRACTICE SET
Review Questions

'..llrl-l-'..hl I-dl-

o - o

How does a single-bit error differ from a burst error?

Discuss the concept of redundancy in error detection.

What are three types of redundancy checks used in data commumnications?

How can the parity bit detect a damaged data unit?

What is the ditference between even parity and odd parity?

Discuss the parity check and the types of errors it can and cannot detect.

How is the simple parity check related 1o the two-dimensional parity check?
Discuss the two-dimensional parity check and the types of errors it can and cannot
detect.

62

CHAPTER 10 ERROR DETECTION AND CORRECTION

9.
10,
11.

¥

-

13,

14

15,

16,
17.
18.
19.

20.

21

M

¥

What does the CRC generator append 1o the data unit™

What is the relationship between the size of the CRC remainder and the divisor?
How does the CRC checker know that the received data unit is undamaged?
What are the conditions for the polynomial used by the CRC generator?

How is CRC superior to the two-dimensional parity check?

What is the error detection method used by upper-layer protocols™”

What kind of arithmetic is used 1o add segments in the checksum generator and
checksum checker!

List the steps involved in creating a checksum.
How does the checksum checker know that the received data unit i1s undamaged?
What kind of error is undetectable by the checksum?

What is the formula to calculate the number of redundancy bits reguired to correct
a bil error in a given number of data bits?

What is the purpose of the Hamming code”
. How can we use the Hamming code to correct a burst error?

ultiple-Choice Questions
. Which error detection method consists of a parity bit for each data unit as well as
an entire data unit of parity bits?
a. Simple parity check
b. Two-dimensional parity check
¢c. CRC
d. Checksum

23. Which error detection method uses ones complement anthmetic”

a. Simple parity check
b. Two-dimensional parity check
c. CRC
d. Checksum
. Which error detection method consists of just one redundant bit per data unit?

a. Simple parity check
b. Two-dimensional parity check

c. CRC
d. Checksum
23, Which error detection method involves polynomials!

. Simple parity check

b. Two-dimensional parity check

¢. CRC

d. Checksum

Which of the following best describes a single-bit error?
i A single bit is inverted.

b. A single bit is inverted per data unit.

2%

24

&)

il

ad
Fogt

13

SECTION 1006 PRACTICE SET 263

c. A single bit is inverfed per transmission.

d. Any of the above

If the ASCIH character G is sent and the character 1D is received, what type of error
i% this?

i Singie-bit

b. Multiple-bit

¢. Burst

d. Recoverable

If the ASCI] character H is sent and the character [is received. what type of error
i% this?

a. Single-bit

b. Multuple-bit

0. Burst

d. Recoverable

In cyclic redundancy checking, what is the CRC?

a. The divisor

k. The quotient

. The dividend

d. The remainder

In cyclic redundancy checking, the divisor is the CRC.

i, The same size as

v, 1 bl less than

¢. | bt more than

d 2 bits more than

If the data umit is 100101, the divisor 1010, and the renannder 110, what is the

dividend af the receiver?

a TITHLI0T]
o THETTRRIO
¢, TG

d, 1101t

If the data unit is 111111 and the divisor 1010, what is the dividend at the ransmitter?
o TETTTIO00

B TRDT 1 HO000

. TIT

d. TEITLR10M

If odd parity is used for ASCII error detection, the number of Os per 8-bit symbol

I's

a Even

b, Oudd

¢. Indeterminaie
d. 42

264 CHAPTER 10 ERROR DETECTION AND CORRECTION

14, The som of the checksum and data at the recemver 1s

15,

£ 1

1K

g1,

4]

o | _[]

b, 4+

¢. The complement of the checksum

d The complement of the data

The Hamming code is o method of .

1. Emor detection

b, Ermor cormection

¢. Error encapsulation

d. {a)and (b)

In CRC there is no ervor if the remainder at the receiver is
a. Equal to the remainder ai the sender

b, Fero

c. Noazero

d. The quotient ar the sender

In CRC the quotient at the sender

1. Becomes the dividend at the receiver

b, Becomes the divisor at the receiver

¢, s discarded

d. Is the remainder

Which error detection method involves the use of parity bis”
n Sumple parity check

b, Two-dimensional parity check

. CRC

d. (a) aml (h)

Which error detection method can detect a single-bii error!
o, Simple panty check

b, Two-dimensional panty check

c, CRC

d. All the above

Which error detection method can detect a burst error?

5. The parity check

b. Two-dimensional parity check

(b} and ()

Al the CRC generator, added o the dma onit before

a0 Uk are

-
H

b, 15 are
¢. A polynomial is
d. A CRC remainder is

if there are nd ermors.

the division process.

42,

43,

SECTION 106 PRACTICE SET 165

Al the CRC generator, added w the data unit after the division process.
a. (s are

b. Is are

¢. The polynomial 1=

d. The CRC remainder is

At the CRC checker,
a. A siring of Os

b. A stning of 1s

c. A siring of alternating 1% and (%
d. A nonzero remainder

mcans that the data unit s damaged.

Exercises

4=

45,

&7,

44,

S0

51.

h 78
53

What s the maximum effect of a 2-ms burst of noise on data transmitied at

a. 1500 bps?

b. 12,06K) bps?!

. 96,000 bps?

Assuming even panity, find the parity bit for each of the following data units,

a 1001011

b, DO 10K

c. 1000000

d. 1110011

A receiver receives the bit pattern G0 101011, If the system is using ¢ven party, is
the pattern in error?

A sysiem uses two-dimenssonal party. Find the panty anit for the following two
dats units. Assume even parity.

[OOLI00T ool

Criven a 10-hit sequence 1010011110 and a divisor of 1011, find the CRC. Check
YL GNSWET.

Given a remainder of 111, a data unit of 10110011, and a divisor of 1001, is there
an error in the data unit?

Find the checksum for the following bit sequence. Assume a 16-bit segment size.
[0 T LOOT0aL]

[O00 100000001 101

Find the complement of 11100100011 10011,

Add 111K] and OOGE 1100 in ones complement. Interpret the result.

For each data unit of the following sizes, find the minimom member of redundancy
bits needed o correct ong single-bit error.

a 12
b 16
. 24
d 64

266 CHAFPTER I ERROR DETECTION AND CORRECTION

54
55,

57,

58,

e,
i),
Bl.
B,

fil.

0,

5

Construct the Hamming code for the bit sequence 1001] 101,

Find the parity bits for the following bit pattern, using simple parity. Do the same
for two-dimensional parity. Assume even parity.

= DOLTIOL TTOOLTT TTE1T11 OOENRKK)

. A sender sends 01 110001 the receiver recerves OLOOOD0T, IF simple parity 15 used,

can the receiver detect the ermor?

The following block is received by a system using two-dimensional even paniy.
Whach bats are in error?

= [OGTON0Y OO 111 D ROIOOD 11011011

A system using two-dimensional even parity sends a block of ¥ bytes. How maany
redundant bits are sent per block? What is the ratio of nseful bits w o] bits?

It a divisor is 100 107, how many bits long s the CECY

Find the hinary equivalent of ¥+ 2+ x4+ 1

Find the polynomial equivalent of 100001 | 10001,

A receiver receives the code 11001 100111, When it uses the Hamming encoding
algonithmn, the resalt is 0100, Whach bit 15 i ervor? Wht is the correct code™

In single-bit error correction. a code of 3 bits can be i one of four sates: po error.
first bat 10 error. second bit in error, and third bt n eoror. How many of these 3 bits
should be redundant to correct this code”? How many bits can be the actual data?
Usimg the logic in Exercise 63, find out how many redundant bits should be in 2
10-bit coxde o detect an error,

The code 11110001101 was received. Using the Hamming encoding algorithm,
what 1= the ur‘iginal cnile sent’?

11

Data Link Control
and Protocols

Data communication requires at least two devices working together, one to send and
one 1o receive. Even such a basic arrangement requires a great deal of coondination for
an intelligible exchange 1o occur. The most imporant responsibilities of the data link
layer are flow control and error control. Collectively, these functions are known as
data link control.

In this chapter, we first informally define flow and error control. We then intro-
duce three mechanisms that handle flow and error control. We finally discuss a popular
data link protocol, HDLC.

11.1 FLOW AND ERROR CONTROL

Flow and error control are the main functions of the data link laver. Let us informally
define each,

Flow Control

Flow control coordinates the amount of data that can be sent before receiving acknowl-
edgment and is one of the most important duties of the data link layer. In most proto-
cols, flow control is a set of procedures that tells the sender how much data it can
transmitl before it must wait for an acknowledgment from the receiver. The flow of data
must not be allowed to overwhelm the receiver. Any receiving device has a limited
speed at which it can process incoming data and a limited amount of memory in which
1o store incoming data. The receiving device must be able (o inform the sending device
before those limits are reached and 1o request that the transmitting device send fewer
frames or stop temporarily. Incoming data must be checked and processed before they
can be used. The rate of such processing is often slower than the rate of transmission.
For this reason, each receiving device has a block of memaory, called a buffer, reserved
for storing incoming data until they are processed. If the buffer begins to fill up, the
receiver must be able 1o tell the sender 1o halt transmission untl it is once agan able
receive.

