
C Programming Notes by Saurabh Gupta, AP-CSE, NIEC Page 1

Decision Making

Decision Making

 Decision is a word which is normally taken in a moment where one is in a
position to select one option from the available options which are obviously
more than one. While writing programs this concept is always going to play
an important role. We will have to provide the capabilities to our program so
that it can take decisions on its own depending upon the various possible
inputs from the user.
 When you are going to write some program it will be always necessary
that you will have to put some code which has to be executed only when a
specific condition is satisfied. These conditions are evaluated by the computer
itself when the input is given by the user.
 In C language there are various methods which can be used to select an
appropriate set of statements depending upon the user’s input. On counting
them, totally there are FOUR different ways to take decisions which are as
follows :
 (a) if Statement
 (b) if-else Statement
 (c) Conditional Operators
 (d) Switch Statement
 Confused, which one to use!!! All the above four methods can be used for
decision making but their application will vary, you will feel comfortable after
making a few programs using them.

if Statement

 As the word itself is clarifying its meaning, it is used to check a condition
and perform a set of statements according to the result of the condition
checked.

Decision Making

C Programming Notes by Saurabh Gupta, AP-CSE, NIEC Page 2

Statements

False
Condition

?

True

Statements

Fig. 3.1

Syntax :

if (condition)
{

...

... // True_Block statements;
…

}
else
{

…
... // False_Block Statements;
…

}
 In the above given syntax "condition" means any relational condition or
any mathematical expression. If the condition given in the brackets
(parenthesis) is TRUE then the statements within the BRACES executed.
 In case of mathematical expressions every non-zero value (i.e. +ve or -ve)
is considered to be TRUE and zero value is considered as FALSE.
 The statements given in BRACES after the "else" part are executed when
the condition is false (not satisfied).

if with a relational expression

 In the previous chapter there is a list of all possible relational operators.
We can use any of those relational operators in the if statement.

Example 1. Write a program to print which variable is bigger in two
variables.

Solution :

Decision Making

C Programming Notes by Saurabh Gupta, AP-CSE, NIEC Page 3

Flowchart :

Start

Var1 = 5
Var2 = 20

Is
Var1 > var2

?

True Print
‘‘Variable 1 is

bigger’’

Print
‘‘Variable 1 is

smaller’’

Stop

False

Program :

#include<stdio.h>
main()
 {
 int var1=5, var2=20;
 if(var1 > var2)
 {
 printf(“Variable 1 is bigger ”);
 }
 else
 {
 printf("Variable 1 is smaller");
 }
 }

 Explanation : There are two variables in the above program which are
having some values. In the given example the value of val1 is smaller then
var2, so the condition for if is false. According the program is going to print
the output. You guessed right. The output will be "Variable 1 is smaller".

Example 2. Write a program to check if a given number is even or odd.

Decision Making

C Programming Notes by Saurabh Gupta, AP-CSE, NIEC Page 4

Solution :
Flowchart :

Start

Insert number

Is
[number% 2=0]

?

True Print
‘‘Variable is

even’’

Print
‘‘Variable is

odd’’

Stop

False

Program :

#include<stdio.h>
main ()
{
 int var;
 printf("Enter a Number : ");
 scanf("%d",&var);
 if(var%2= =0)
 {
printf("You entered a Even Number");
 }
 else
 {
printf("You entered a Odd Number");
 }
 }

 Explanation : The above program is using "var%2" (% - modulo operator)
as a part of condition. This is going to return the remainder after dividing
variable "var" with 2. If any number is fully divided by 2 it will be taken as a Even
Number.

Table 3.1. Table showing results when relational operators are
used with IF statement

if(x == y) Evaluates the expressions of TRUE Block if values of

Decision Making

C Programming Notes by Saurabh Gupta, AP-CSE, NIEC Page 5

variable “x” and “y” are equal.
if(x > y) Evaluates the expressions of TRUE Block if value of variable

“x” is greater than value of variable “y”.
if(x >= y) Evaluates the expressions of TRUE Block if value of variable

“x” is greater than or equal to value of variable “y”.
if(x < y) Evaluates the expressions of TRUE Block if value of variable

"x" is smaller than value of variable “y”.
if(x <= y) Evaluates the expressions of TRUE Block if value of variable

“x” is smaller than or equal to value of variable “y”.
if(x !=y) Evaluates the expressions of TRUE Block if value of variable

“x” is not equal to value of variable “y”.

if with a mathematical expression

 In case of relational operators it's clear as to which block will be executed.
But we can also use a mathematical expression in IF statement. How will IF
statement evaluates it?
 IF statement will evaluate the True_block when the mathematical
expression returns a NON-ZERO (i.e. TRUE) and if it returns a ZERO value
then it will evaluate the expression given in the False_block.

Example 3. Write a program that execute true block if inserted number is
equal to 99 otherwise false block.

Solution : Flowchart

Start

Insert number

Is
number = 99

?

True Print
‘‘Variable is

Block’’

‘‘Expression
Executed False

Block’’

Stop

False

Program :

#include<stdio.h>
main()

Decision Making

C Programming Notes by Saurabh Gupta, AP-CSE, NIEC Page 6

 {
 int var1;
 printf("Enter a value: ");
 scanf("%d",&var1) ;
 if (var1 == 99)
 {
 printf("Execute True Block");
 }
 else
 {
 printf("Executed False Block");
 }
 }

 Explanation : The true statement will be executed when the entered
value is 99. But if user enters greater than or less than 99 then it will execute
the false block.

Example 4.

#include<stdio.h>
main()
 {
 int var1;
 printf("Enter a value: ");
 scanf("%d",&var1);
 if(var1)
 {
 printf("Expression Executed True Block");
 }
 else
 {
 printf("Expression Executed False Block");
 }
 }

 Explanation : In the above example, if statement is now not having any
condition. "if (var1)" is a valid statement and will execute the True_block if
user enters a non-zero (+ve or –ve) and Flase_block will be executed if value
or var1 is ZERO.
Example 5.
#include<stdio.h>
main ()
 {
 int var1;
 printf("Enter a value : ");
 scanf("%d", &var1);

Decision Making

C Programming Notes by Saurabh Gupta, AP-CSE, NIEC Page 7

 if(var1 > 90 };
 {
 printf("Expression Executed True Block");
 }
 else
 {
 printf("Expression Executed False Block");
 }
 }
 Will the program work? NO! Compiler gives an error "Misplace else in
Line 11"
 Explanation : In the IF statement there is a problem: If we apply
a SEMI-Colon at the end of IF-statement which signifies that if the condition
in if statement satisfied we do not want to do any thing. In the next line there
is a block of statements in braces which is out of the scope of IF-statement. So
we can say that the if-statement ends in that its line itself.
 When the compiler comes down there is an ELSE statement followed by a
set of statements enclosed in BRACES. That's why there is an error
"Misplaced else". So IF-statement is dangerous in such cases.

Example 6.
#include<stdio.h>
main()
{
 int var1;
 printf("Enter a value: ");
 scanf("%d",&var1);
 if(var1 > 90 };
 else
 {
 printf("Expression Executed False Block");
 }
}
 Explanation : Example 6 is an error free program. If the value for var1
is greater than 90, no message will be displayed. If the value of var1 is less
then or equal to 90 the output will be "Expression Executed False Block".

Are Brackets going to Matter?

Example 7.

#include<stdio.h>
main ()
{
 int age;
 printf("Enter your age: ");
 scanf("%d",&age);
 if(age < 20)

Decision Making

C Programming Notes by Saurabh Gupta, AP-CSE, NIEC Page 8

 printf ("Hello!”);
 printf("User”);
}

Start

Insert age

Is
Age < 20

?

True
Print "Hello !"

Print "User"

Stop

Execution of Program :
Input :
Enter your age: 25
Output: User
Output :
Enter your age: 2
Output: Hello! User

 Explanation: If the user enters age less than 20. The condition for the
above program will logically correct. There are no braces enclosing for the if-
statement hence the first statement is taken as an true_block statement and
the second statement is taken as a normal statement. Second statement is not
effected by the condition.

Expressions Result

if(!age) Executes True_block if value of age is equal to 0.

if(!!age) If there are two! (not) operators used they are going to
cancel each other and final result depends upon the value
of age only.

if(age-50) Executes True_block if value of age is not 50.

if(59) Always executes the True_block as 59 is a Non_zero
constant.

if(!a==0) Will first negate "a". If "a" is non-zero it becomes zero and
vice-versa.

Decision Making

C Programming Notes by Saurabh Gupta, AP-CSE, NIEC Page 9

After that "a" is compared with 0 and executed
accordingly.

if (! (a==0)) Will first compare "a" with 0 and the result will be
reversed. Suppose, if "a==0"

Nested IF Statements

 There are times when it will be required to check more than one
conditions and according to their collective results would like to perform
various tasks. We can use IF statements within another if statements for any
number of times required. Although there is not any separate syntax for if-
else statements.
Syntax :

if(condition1)
{
 if(condition2)
 {
 … //statements
 }
 else
 {
 … //statements
 }
}
else
{
… //statements
}

Decision Making

C Programming Notes by Saurabh Gupta, AP-CSE, NIEC Page 10

Start

Insert age

Is

?
Condition1

Is
Condition2

?

False

True

Stop

False

Statement (if
condition1 is

false)

Statement (if
condition2 is

false but
condition1 is

true)

True

Statement (if
condition1 &

condition2 is true)

Example 8. Write a program to find Maximum out of three numbers.

Solution :

Flowchart :

Decision Making

C Programming Notes by Saurabh Gupta, AP-CSE, NIEC Page 11

Start

Insert 3 Numbers a, b, c

Is
a > b

?

Is
b > c

?

Print
b is largest

Print
‘‘c is largest’’

Print
‘‘a is largest’’

Is
a > c

?

False

True

False

Stop

True

False

True

Program :
#include<stdio.h>
main ()
{
 int a, b, c;
 printf("Enter three numbers a, b and c respectively: ");
 scanf("%d%d%d",&a, &b, &c);
 if(a > b)
 {
 if(a > c)
 {
 printf("a is Largest");
 }
 else
 {
 printf("c is Largest");
 }

Decision Making

C Programming Notes by Saurabh Gupta, AP-CSE, NIEC Page 12

 }
 else
 if(b > c)
 {
 printf("b is Largest");
 }
 else
 printf("c is Largest");
 }
}
Execution of Program :
Intput : Enter three numbers a, b and c respectively:
Output : b is largest.
 Explanation : The above program looks bigger in size but it’s very
simple. At the start the user enters three values stored in a, b and c
respectively. First IF statement checks if a is greater than b and if the
condition is true it enters into the True- block otherwise in the False- block.
 With the True and False blocks there is again a IF condition which further
makes check for the largest number and finally prints name of the variable
holding the largest value.

Condition Connectors

Operator Example Treatment

&&
if(a>5 && a<10)
Executes True block if both the conditions are
satisfied, otherwise False_block is executed.

||
if(a>5 II a<10)
Executes True_block if any of the condition is
satisfied.

Example 9.
#include<stdio.h>
main()
{
int a=10, b=20;
if(a > 5 && b > 10)
{
printf("Both conditions are satisfied\n");
}
if(a > 15 || b > 15)
{
printf ("Anyone condition is compulsory true");
}
}

Conditional Operator

 Recall Example 8, the program was written to find maximum out of three
numbers and the program became big in size and complicated. C provides a

Decision Making

C Programming Notes by Saurabh Gupta, AP-CSE, NIEC Page 13

conditional operator (? :) which can be used to check conditions within one
line and result of the condition can be stored somewhere else.
 The syntax to be followed for the conditional operator is as follows :
 var = (conditional_statement) ? True_block/expression :
False_block/expression;
 In the above syntax shows that the first parameter for the conditional
operator will be a condition (Relational condition or mathematical
expression) and depending upon the condition either True_block or the
False_block is going to be executed for which the result will be taken to a
variable which is at the left hand side.

ans=(a>b)?a:b;
printf("%d",ans);

 In the above the condition a>b will be checked and if it is satisfied then a
will be assigned to the variable ans otherwise b will be assigned to ans. We
can extend this idea and find maximum for three numbers.

Example 10. Write a program to find Maximum out of three numbers
(Using Conditional Operator)
Program :

#include<stdio.h>
main ()
{
int a, b, c, max;
printf("Enter three numbers: ");
scanf("%d%d%d",&a, &b, &c);
max = (a>b) ? (a>c)? a:c: (b>c)? b:c;
printf("Maximum value = %d\n",max);
}

 The operator works with ease when there are few conditions (1-3) to be
checked, but it becomes complicate when there is a need to check more than
3 or 4 conditions.

Example 11. Write a program to give bonus according to grade of
employees. There are only following three grades available.

Employee Grades Bonus
101 1000/-
102 1500/-
103 2000/-

Program :
#include<stdio.h>
main()
{

int salary, grade, bonus, basic;
printf("Enter basic salary and grade of employee :");
scanf("%d%d", &basic, &grade);
salary = basic + (grade = = 101) ? 1000 : (grade = = 102) ? 1500:2000;
printf("Total Salary for employee = %d",salary);

}

Decision Making

C Programming Notes by Saurabh Gupta, AP-CSE, NIEC Page 14

If conditions increased :

SWITCH Statement

 C provides however another method which can be used to check a good
number of conditions and will work accordingly. SWITCH is a method
which is going to take an integer parameter and depending upon that
parameter will do the given operations.

The syntax for Switch is as follows :

 switch (integer_expression)
{

case value:
statements;
break;
case value:
statements;
break;
default:
statements;
break;

}
As the syntax shows that within parenthesis of switch we will always have to
give an integer expression and depending upon the value of that expression
switch will select the equivalent case. After executing the case statements if
break statement comes then the control exit from the SWITCH. If in any case
the break is missing then all the statements below that case are also executed.
If there is no case value which matches the value in the switch then
statements in the default block will be executed.

Example 12. Write a program to calculate grades for a student who
appeared in four tests. The criteria for allocating grade are as follows :

Average Marks Obtained Grades
>=80 Distinction
>=60 First Division
>=50 Second Division
>=40 Pass

Otherwise Fail
Program :
#include<stdio.h>
main()
{

int marks1, marks2, marks3, total, average;
printf("Enter marks for three subjects: ");
scanf("%d%d%d",&marksl,&marks2,&marks3);
total = marksl+marks2+marks3;
average = total/3;
switch (average/10)
{
case 10:
case 9:

Decision Making

C Programming Notes by Saurabh Gupta, AP-CSE, NIEC Page 15

case 8:
printf("Distinction");
break;
case 7:
case 6:
printf("First Division");
break;
case 5:
printf("Second Division");
break;
case 4:
printf("Pass");
break;
default:
printf("Fail");
}

}
Execution of Program :
Input : Enter marks for three subjects :
 55
 66
 77
 First Division.
 Explanation : In the program average is an integer variable holding the
average marks for the student. Because of integer type it only stores the integer
part of the value. We are loosing the accuracy by leaving the fractional part but
that is necessary because the switch statement can only operate on integer
expressions.
 The value of average can be between 0-100 and putting condition for each
value is a typical task. The switch statement is having average/10 as an
expression which reduces the possible set of values for the switch expression
from 0-100 to 0-10 only.
 What will happen if the average marks for a student is 73.
 The integer expression for the switch statement is = 7. So control comes
on the case 7 but there is no break statement. Due to absence of break
statement control comes on case 6 and print "First Division". Printf
statement is followed by a break statement which brings the control out.

Example 13. Write a program to generate Electricity Bills according to the
following conditions :

Units Consumed Charges
<=200 Re. 0.50 per unit
<=400 Rs. 100 + Re. 0.65 per unit
<=600 Rs. 230 + Re. 0.75 per unit

Otherwise Rs. 380 + Re. 1 per unit
Program :
#include<stdio.h>
main()
{

int c_no, units;

Decision Making

C Programming Notes by Saurabh Gupta, AP-CSE, NIEC Page 16

float bill;
printf("Enter consumer number and units consumed: ");
scanf("%d%d",&c_no, &units);
switch((units-1)/200)
{

case 0:
bill = units * 0.50;
break;
case 1:
bill = 100 + (units-200) * 0.65;
break;
case 2:
bill = 230 + (units-400) * 0.75;
break;
default:
bill = 380 + units-600;

}
printf("Consumer Number: %d\n",c_no);
printf("Units Consumed: %d\n",units);
printf("Total Bill: %f\n",bill);

}
Execution of Program :
Input : Enter consumer number and unit consumed : 101
 100
Output : Consumer Number : 101
 Unit consumed : 100
 Total Bill : 50
 Explanation : From the specified conditions we can see that we can
divide units consumed by 200 to get a smaller number of cases but the
problem is there in case a consumer consumes exactly 200/400 or 600 units
then the group may get changed. To overcome from that condition we wrote
(units-1)/200; that mean reduced units consumed by one and then divide it
by 200. The reduction is not actual because the given below two statements
are entirely different.
x = x - l; /* Reduces the value of x by 1. */
y = x - l; /*Assigns y value 1 less that the value of x, x remains
 unchanged.*/

Prefix and Postfix Operators

 C provides prefix and postfix operators which can be used with the
expressions so that more than one job is done by single expression.
 Prefix: If there are more than one operation to be carried in an
expression and anyone of them is a prefix operation then that will be the first
operation to be carried out.
 Example: ++a (i.e. It will increase the value of a by 1 then assign the value.)
 Postfix: Here if there are more than one operation to be carried in an
expression and any one of them is a postfix operation then that will be the
last operation to be carried out.
 Example: a++ (i.e. It will assign the value of a and then increment by 1.)

Decision Making

C Programming Notes by Saurabh Gupta, AP-CSE, NIEC Page 17

Program :
void main()
{
int i =1;
 printf(“%d%d%d”, i++, i++, i++);
}

Execution of Program :
Output :
123

Still Confusing ?

Example :
 This can be confusing at first, but if x is an integer whose value is 5 and
you write
 int a = ++x;
 You have told the compiler to increment x (making it 6) and then fetch
that value and assign it to a. Thus, a is now 6 and x is now 6.
 If, after doing this, you write
 int b = x++;
 You have now told the compiler to fetch the value in x (6) and assign it to
b, and then go back and increment x. Thus, b is now 6, but x is now 7.
Example 14.

#include<stdio.h>
main ()
{
int a=10, b=20;
if(++a > 5 && ++b > 10)
{
printf("a = %d, b = %d”, a, b);
}

Result: a = 11, b = 21
In the above program change the if-condition which is given in bold letter
with the given below line and notice the difference.

if(++a > 5 || ++b > 10)
Result: a = 11, b = 20

(Because in || (OR) if the first condition is satisfied then the compiler is not
going to check the second condition and hence the b is not incremented and
remains 20)

