
www.it-ebooks.info

http://www.it-ebooks.info/

Git Essentials

Create, merge, and distribute code with Git, the most
powerful and flexible versioning system available

Ferdinando Santacroce

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Git Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015

Production reference: 1240415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-790-9

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Ferdinando Santacroce

Reviewers
Fabrizio Donina

Giovanni Giorgi

Giovanni Toraldo

Commissioning Editor
Edward Gordon

Acquisition Editor
Meeta Rajani

Content Development Editor
Samantha Gonsalves

Technical Editor
Siddhesh Ghadi

Copy Editors
Hiral Bhat

Karuna Narayanan

Alpha Singh

Project Coordinator
Kinjal Bari

Proofreaders
Simran Bhogal

Safis Editing

Paul Hindle

Bernadette Watkins

Indexer
Tejal Daruwale Soni

Graphics
Jason Monteiro

Abhinash Sahu

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

Occasionally, in the IT industry, some inventions are made whose value is far
beyond their merely technical merit. Git is one of them.

Git is immensely faster and more convenient than SVN, CVS, and TFS. It is fast
becoming the defacto standard mainly because there are no tools as powerful and
versatile as it is; it is a wonderful masterpiece of code. Behind the success of Git lies
much more: it is a revolutionary approach to writing code. Git houses an inherently
collaborative component in its DNA. It is no coincidence then that the GitHub's
tagline is Social Coding.

If Linus Torvalds goes down in history, it will perhaps be not only for Linux and his
genius in writing C, but above all, for the social impact that Git has had on the IT
community. Just like the invention of the Web and HTTP have enabled humanity to
build a network of communication and collaboration previously unthinkable, Git is
the very tool that enables us to transform code development into a social activity. As
a matter of fact, Git has started a new era in IT.

Git is also a very well documented tool. If you want to learn the syntax of its 155
commands, you don't need this book; the man pages, which are available for free on
the web, are certainly more exhaustive.

However, the heart of Git does not lie in the list of its command options. Just like
reading the syntax of the class and interface keywords will hardly make you
grasp the deeper meaning of object-oriented programming, in the same way, the
essence of Git won't emerge easily from its man pages.

The hardest part of Git is the paradigm shift that it requires. Honestly, very few
books that I've read are able to explain Git and the universe that revolves around it,
in a simpler way than the one you're holding in your hands.

www.it-ebooks.info

http://www.it-ebooks.info/

This book covers not only all the main topics you can find on the man pages with
simplicity and synthesis (such as the commit, stash, rebase, and management of
remote), but also has the merit of being one of the few books to give you a 360-degree
overview of the ecosystem that every pragmatic programmer should master. It
explains how to set up a local server, teaches you the theory and practice behind
GitHub and pull requests in a simple and practical way, and even contains a
step-by-step guide to migrate from SVN to Git.

Git Essentials has another merit: it is built like a huge tutorial, and is a step-by-step
journey through the Git universe. It's not an academic paper; on the contrary, it's full of
concrete examples, is written by a programmer, and targeted at other programmers.

It is a book that values code much more than words.

Arialdo Martini

Solutions Architect at Aduno Gruppe

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

At the time of writing this (April 2015), Git has just crossed the historical 10th
anniversary since its inception. It is crazy for me to think it's already been 10 years.

Owing not in a small part to the innovative concepts that Git and some earlier DVCS
solutions brought about, a huge chunk of the modern software development world
has been turned upside down due to it. Teams that have adopted it have been greatly
empowered on many fronts.

You can branch off and start working on some experimental features without
bothering your colleagues. You can also keep your stable branches stable and only
merge completed features. Git will also allow you to explore an entire project while
on a plane without sending a single network request.

I went back and looked at my first repository and it appears I started using Git
professionally in 2008. Thinking about it, I remember the initial struggle I had with
some of the core concepts. Git is not particularly easy to pick up even though its user
interface has improved consistently over time.

However, after so many years, we enthusiasts and early adopters have been fooled
by our own reality tunnel. It's easy to fall into the perception that nowadays the
entire world is already using Git and the transition has been completed. I know for a
fact though, that I am mistaken!

During the course of my journey through Europe over the last two years, I have seen
teams at all stages of Git adoption. I've noticed, for example, that Nordic countries,
such as Sweden and Norway, have been working with Git for several years already,
while in other countries, companies have only recently decided to make the
transition. It's funny that just a few weeks ago somebody told me that they won't be
transitioning to Git any time soon. The reason for this? They spent years migrating
from CVS to SVN!

In addition to all that I've said, there is still a pressing need to educate teams all
around the world about the usefulness of Git. So, I welcome Ferdinando's work with
open arms and his efforts in developing a solid guide for people who want to add
Git to their toolkit.

www.it-ebooks.info

http://www.it-ebooks.info/

What will you gain from a good understanding of Git? It will forever change the
way you write software. You'll be able to save your changes as many times as you
want in an unpolished, raw form. You'll also be able to always go back and polish up
everything before sharing your work with a rebase.

You will be able to work in isolation on a feature or bug fix without disturbing your
teammates or lowering the quality of the master stable branch (refer to Chapter 2, Git
Fundamentals – Working Locally, for this).

Finally, I can't emphasize enough how Git—and the concepts that are built on it,
such as the idea of pull requests—have changed the way professional teams interact,
thereby embedding a code review practice into the very texture of the software
development process (refer to Chapter 5, Obtaining the Most – Good Commits and
Workflows).

It's a great time to be adopting Git and reaping the benefits of this solid and efficient
tool whether you are a hobbyist or a professional developer. Good luck!

Nicola Paolucci

Developer Advocate at Atlassian

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

Having first used CVS as a source version control more than a decade ago, I
remember how easy it was to make the transition to using Subversion, which I
thought was all I needed in a source version control tool. Then came Git, Bazaar, and
Mercurial, the new kids on the block. I looked at them briefly, but initially, I couldn't
see what advantage they could really have for me as a programmer over Subversion,
as I was working mostly on my own projects. However, it became more and more
evident that to facilitate collaboration, I would have to become much more familiar
with these new tools. Very soon it seemed, Git became the first choice and I started
using it in earnest. I remember feeling that the tutorials I read seemed needlessly
complicated, spending too much time on what I felt were unnecessary details. When
I read the first draft of Git Essentials, my first thought was, "This is the book I wish I
had when I first learned about Git."

Instead of jumping right away into detailed descriptions of the intricacies of dealing
with multiple copies of some software shared by multiple programmers—one of the
strengths of distributed source version control software such as Git—Ferdinando
Santacroce, the author of Git Essentials, took a different approach, focusing on you
first as a potentially lone programmer wishing to use Git.

After going through the basics of installing Git in the first chapter, Ferdinando
devotes the following chapter to using it locally, that is, without working with
an external repository. This allows you to focus on the basics of Git without
the unnecessary complication of dealing with the added concept of an external
repository. This is not the way I have seen Git being introduced usually—yet, it
is definitely the right way. From this point on, there is a logical progression with
important concepts highlighted in a progressive manner. Ferdinando postpones
the added complication of working with a remote repository until Chapter 3, Git
Fundamentals – Working Remotely, using GitHub as an example. Since GitHub has
become the most widely used Git repository in the world, this choice is very logical.
Yet, the concepts explained in this chapter are just as applicable to other similar sites,
such as GitLab or Bitbucket.

www.it-ebooks.info

http://www.it-ebooks.info/

There is so much that could be covered when describing how to use Git that it can
be a challenge to focus on the essentials, as the title of the book implies. However,
Ferdinando has achieved to do just that by making a very judicious use of references
to easily accessible external references. The basic topics are well-presented, and
pointers to find out more information are added just at the right time. My favorite
example of this, which is something I learned from Ferdinando, is to write commit
messages before writing the code. Ferdinando mentions this in Chapter 5, Obtaining
the Most – Good Commits and Workflows, which briefly explains the rationale and
includes a reference to a detailed blog post written by Arialdo Martini on this topic.
Current Subversion users, who are considering starting using Git, will find Chapter 6,
Migrating to Git, particularly useful.

Git Essentials is definitely not your traditional dry technical document. Ferdinando's
writing style is not only that of a friendly conversation with a friend—one who is
passionate about his or her favorite topic and eager to help you learn it—but also
that of a friend who knows how to restrain his or her enthusiasm and teach you just
enough to enable you to do what you need to do. He does this while giving you
useful pointers in case you want to know more.

Dr. André Roberge

Former President and Vice-Chancellor of Université Sainte-Anne

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Ferdinando Santacroce is a developer, author, and teacher who loves learning
new things.

As a software developer, Ferdinando mainly works on the .NET platform using C#,
which bridges the gaps between oldstyle systems and new technologies. Over the
span of his career, he has allowed COBOL applications to talk with remote services,
databases, and electronic devices, such as cash handlers, scanners, and electronic
shelf labels. At the moment, he's focusing on continuously improving the Agile
Movement, which he follows with great care, in conjunction with XP foundations
and lean manufacturing.

While working as a teacher, he developed the first web-based school register in a
school of his district, which allowed parents to take a look at grades and absences
on a regular basis.

Ferdinando loves to teach people, everyone from children to grandpas, and
introduces them to the use of computers, the Internet, and new mobile devices.

He enjoys writing too; after a hiatus of a few years, he started blogging again about
his work and passions, which, according to him, is more or less the same thing.

Most of what he's learned over the years has been with the help of his friends and
colleagues. This has encouraged him to read books and attend inspiring conferences,
such as XP Conference, Italian Agile Day, Codemotion, and others, that help his
growth by working on the same code with him.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Fabrizio Donina is 34 years old. For 14 years, he worked at a steel plant. He has
been involved in the management of industrial automation systems. He first gained
experience on platforms, such as Siemens SCADA Cube, Access Database, and Oracle 8i.
In recent years, he has had the opportunity to use different development environments,
such as SCADA, FactoryTalk by Rockwell, iFix, and WinCC flexible by Siemens.
Currently, he's programming PLC Siemens S7 300/400, performing diagnostics and
fault searches. Over the years, he has been able to develop software with the help of
VB6.0 and Oracle Forms and interface Oracle - > SAP, by implementing Oracle stored
procedures for exchanging data. In recent years, he started programming the MES
system, which is now in operation at the plant he's working in.

This is the first time he's been asked to review a book. So far, he's always read
manuals that have already been published.

I would like to thank Ferdinando Santacroce who got me involved in
this great experience.

Giovanni Giorgi is an IT professional with a strong cultural background, and is
currently living in Milan, Italy.

Giovanni works for NTT Data and is involved in the IT banking and financial sectors;
he's had more then 15 years of experience in Java-based solutions.

Born in 1974, he grew up with Mazinga Z, Daitarn 3, and 8-bit computers by
Commodore.

In college, he studied Latin and Greek, along with Turbo Pascal and C programming
language as a hobby.

www.it-ebooks.info

http://www.it-ebooks.info/

He then started university in September 1993. After one year, he fell in love with the
GNU open source philosophy and the Emacs text editor.

Giovanni got a master's degree in information technology from DSI in Milan, Italy, in
2000, and specialized in UML and design pattern integration.

He currently write articles on his blog, which can be found at http://gioorgi.com,
and you can also find a list of his projects at https://github.com/daitangio.

I am grateful to my radiant and beautiful wife, Vanessa Marchiò,
who's helped me build a fantastic family, and my two children,
Mattia & Sofia; sometimes it's hard to carry on but the reward is
always so great.
I would like to thank my strong mother, Mariolga, and my father,
Enrico, who've taught me to respect people, to work as a team with
others to achieve outstanding results, and also to strongly believe in
the concept of justice.
My version of Socrates' daemon started to talk to me when I was
eleven, from the creepy circuits of a Commodore VIC-20 with a black
and white Philips TV as its monitor.
My little sister, Raffella, was playing printing hearts on that screen
but I knew it was my way.
I learned and liked other things, but my passion for information
technology will be always part of me; it's similar to an instinct.
"Choose a job you love, and you will never have to work a day in your life."

Giovanni Toraldo started to experiment with Linux and other free software
during his early years at school, and he maintained the official Italian support site
of PHP-Fusion. After a few unsatisfactory years at the university, he decided to start
working as a system administrator and web developer. Now, after having authored
a book on OpenNebula, which was released in mid 2012, he works as lead developer
for a promising Cloud application marketplace start-up based in Pisa, Italy.

www.it-ebooks.info

http://gioorgi.com
https://github.com/daitangio
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

[i]

Table of Contents
Preface	 vii
Chapter 1: Getting Started with Git	 1

Installing Git	 2
Running our first Git command	 4

Setting up a new repository	 5
Adding a file	 6
Commit the added file	 7
Modify a committed file	 8

Summary	 11
Chapter 2: Git Fundamentals – Working Locally	 13

Repository structure and file status life cycle	 13
The working directory	 13

File statuses	 14
The staging area	 15

Unstaging a file	 15
The time metaphor	 17

The past	 17
The present	 18
The future	 21

Working with repositories	 21
Unstaging a file	 21

Viewing the history	 24
Anatomy of a commit	 24

The commit snapshot	 25
The commit hash	 25
Author, e-mail, and date	 25
Commit messages	 26

Committing a bunch of files	 26
Ignoring some files and folders by default	 26

Highlighting an important commit – Git tags	 28

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Taking another way – Git branching	 28
Anatomy of branches	 28

Looking at the current branches	 29
Creating a new branch	 30
Switching from branch to branch	 31
Understanding what happens under the hood	 31
A bird's eye view to branches	 34
Typing is boring – Git aliases	 36

Merging branches	 37
Merge is not the end of the branch	 39

Exercises	 39
Exercise 2.1	 39
Exercise 2.2	 39

Deal with branches' modifications	 40
Diffing branches	 40
Using a visual diff tool	 43

Resolving merge conflicts	 44
Edit collisions	 44
Resolving a removed file conflict	 46

Stashing	 49
Summary	 51

Chapter 3: Git Fundamentals – Working Remotely	 53
Working with remotes	 53

Setting up a new GitHub account	 54
Cloning a repository	 56
Uploading modifications to remotes	 58

What do I send to the remote when I push?	 59
Pushing a new branch to the remote	 59

The origin	 60
Tracking branches	 60

Downloading remote changes	 61
Checking for modifications and downloading them	 61
Applying downloaded changes	 63

Going backward: publish a local repository to GitHub	 64
Adding a remote to a local repository	 66
Pushing a local branch to a remote repository	 67

Social coding – collaborate using GitHub	 67
Forking a repository	 67
Submitting pull requests	 70
Creating a pull request	 71

Summary	 74

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 4: Git Fundamentals – Niche Concepts,
Configurations, and Commands	 75

Dissecting the Git configuration	 75
Configuration architecture	 75

Configuration levels	 76
Listing configurations	 78
Editing configuration files manually	 78
Setting up other environment configurations	 79

Git aliases	 82
Shortcuts to common commands	 82
Creating commands	 82

git unstage	 83
git undo	 83
git last	 83
git difflast	 84

Advanced aliases with external commands	 84
Removing an alias	 85
Aliasing the git command itself	 85

Git references	 85
Symbolic references	 86
Ancestry references	 86

The first parent	 87
The second parent	 87

World-wide techniques	 88
Changing the last commit message	 88
Tracing changes in a file	 88
Cherry picking	 90

Tricks	 92
Bare repositories	 92

Converting a regular repository to a bare one	 92
Backup repositories	 93

Archiving the repository	 93
Bundling the repository	 93

Summary	 94
Chapter 5: Obtaining the Most – Good Commits and Workflows	 95

The art of committing	 95
Building the right commit	 95

Make only one change per commit	 96
Include the whole change in one commit	 99
Describe the change, not what you have done	 100
Don't be afraid to commit	 100
Isolate meaningless commits	 101
The perfect commit message	 101

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Adopting a workflow – a wise act	 103
Centralized workflows	 104

How they work	 104
Feature branch workflow	 105
GitFlow	 105

The master branch	 107
Hotfixes branches	 107
The develop branch	 107
The release branch	 108
The feature branches	 108
Conclusion	 109

The GitHub flow	 109
Anything in the master branch is deployable	 110
Creating descriptive branches off of the master	 110
Pushing to named branches constantly	 110
Opening a pull request at any time	 111
Merging only after a pull request review	 111
Deploying immediately after review	 111
Conclusions	 112

Other workflows	 112
The Linux kernel workflow	 112

Summary	 113
Chapter 6: Migrating to Git	 115

Before starting	 115
Prerequisites	 115

Working on a Subversion repository using Git	 116
Creating a local Subversion repository	 116
Checking out the Subversion repository with svn client	 116
Cloning a Subversion repository from Git	 117

Setting up a local Subversion server	 118
Adding a tag and a branch	 119
Committing a file to Subversion using Git as a client	 119

Using Git with a Subversion repository	 120
Migrating a Subversion repository	 120

Retrieving the list of Subversion users	 121
Cloning the Subversion repository	 121
Preserving the ignored file list	 121
Pushing to a local bare Git repository	 122
Arranging branches and tags	 122

Renaming the trunk branch to master	 122
Converting Subversion tags to Git tags	 122

Pushing the local repository to a remote	 123
Comparing Git and Subversion commands	 123
Summary	 124

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Chapter 7: Git Resources	 125
Git GUI clients	 125

Windows	 125
Git GUI	 125
TortoiseGit	 126
GitHub for Windows	 127
Atlassian SourceTree	 128
Cmder	 129

Mac OS X	 130
Linux	 130

Building up a personal Git server with web interface	 131
The SCM Manager	 131

Learning Git in a visual manner	 132
Git on the Internet	 133

Git community on Google+	 133
GitMinutes and Thomas Ferris Nicolaisen's blog	 133
Ferdinando Santacroce's blog	 133

Summary	 134
Index	 135

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[vii]

Preface
If you are reading this book, you are probably a software developer and a
professional. What makes a good professional? Sure, culture and experience are
a part of the answer, but there's more: a good professional is one who can master
different tools, choose the best tool for the job at hand, and has the necessary
discipline to develop good working habits.

Version control is one of the base skills for developers and Git is one of the right tools
for the job. However, Git can't be compared to a screwdriver, a simple tool with only
a basic function; Git provides a complete toolbox that can help you manage your
own code, within which there are also other sharp tools that should be handled
with caution.

The final aim of this book is to help you to start using Git and its commands in the
safest way possible, to get things done without causing any injuries. Having said
this, you will not get the most from Git commands if you do not acquire the right
habits; just as is the case with other tools, in the end, it is the craftsman who makes
all the difference.

This book will cover all the basic topics of Git, thereby letting you start using it even if
you have little or no experience with versioning systems; you only need to know about
versioning in general and the Wikipedia-related page is enough for this purpose.

What this book covers
Chapter 1, Getting Started with Git shows you all the (simple) steps you need in order
to install Git and do your first commit.

Chapter 2, Git Fundamentals – Working Locally reveals the essence of Git, how it takes
care of your files, and how you can manage and organize your code.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[viii]

Chapter 3, Git Fundamentals – Working Remotely moves your attention to the
collaborating side of the tool, explaining the basic commands individually and the
options you use when working with remote repositories.

Chapter 4, Git Fundamentals – Niche Concepts, Configurations, and Commands completes
the basic set of Git commands you need to know, giving you some more weapons to
use in difficult situations.

Chapter 5, Obtaining the Most – Good Commits and Workflows gives you some hints
about common methods you can use to organize the source code within Git, thereby
helping you to develop good habits that every developer should possess.

Chapter 6, Migrating to Git is a way to give you a hand if you're used to other
versioning systems, such as Subversion, to manage the transitional phase from
another piece of software to Git.

Chapter 7, Git Resources offers you some hints, which I've taken from my experience,
and could prove interesting for you.

What you need for this book
To follow the examples used in this book, and make use of them on Git, you only
need a computer and a valid Git installation. Git is available for free on every
platform (such as Linux, Windows, and Mac OS X). While writing this book, the
examples I use are based on the latest version of Git for Windows, which is 1.9.5.

Who this book is for
This book is for developers. The book does not require experience in a particular
programming language, nor does it require in-depth experience as a software
developer. You can read this book easily if you already use another versioning
system, but this can be your first approach to a versioning tool, if you at least know
the basics of versioning.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[ix]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Go to the local root folder, C:\Repos, for the repositories "

Any command-line input or output is written as follows:

$ git log --oneline

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
" Enabling Windows Explorer integration is generally useful."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.it-ebooks.info

www.packtpub.com/authors
http://www.it-ebooks.info/

Preface

[x]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

[1]

Getting Started with Git
Whether you are a professional or an amateur developer, you've likely heard about
the concept of version control. You may know that adding a new feature, fixing
broken ones, or stepping back to a previous condition is a daily routine.

This implies the use of a powerful tool that can help you take care of your work,
allowing you to move around your project quickly and without friction.

There are many tools for this job on the market, both proprietary and open source.
Usually, you will find Version Control Systems (VCS) and Distributed Version
Control Systems (DVCS). Some examples of centralized tools are Concurrent
Version System (CVS), Subversion (SVN), Team Foundation Server (TFS) and
Perforce, while in DVCS, you can find Bazaar, Mercurial, and Git. The main
difference between the two families is the constraint—in the centralized system—to
have a remote server where get and put your files; if the network is down, you are in
trouble. In DVCS instead, you can have or not a remote server (even more than one),
but you can work offline, too. All your modifications are locally recorded so that you
can sync them some other time. Today, Git is the DVCS that has gained public favor
more than others, growing quickly from a niche tool to mainstream.

Git has rapidly grown as the de facto to version source code. It is the second famous
child of Linus Torvalds, who, after creating the Linux kernel, forged this versioning
software to keep trace of his millions lines of code.

In this first chapter, we will start at the very beginning, assuming that you do not
have Git on your machine. This book is intended for developers who never used Git
or used it a little bit, but who are scared to throw themselves headlong into it.

If you have never installed Git, this is your chapter. If you already have a working
Git box, you can quickly read through it to check whether everything is right.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Git

[2]

Installing Git
Git is open source software. If you are running a Windows machine, you can
download it for free from http://git-scm.com. At the time of writing this book,
the current version of Git is 1.9.5. If you are a Mac user, you can download it from
http://git-scm.com/downloads; here, you can find the *.dmg file, too. Finally,
if you are a Linux user, you probably have Git out of the box (if not, use the apt-
get install git command or equivalent). Here, I won't go into too much detail
about the installation process itself; I will only provide a few recommendations for
Windows users shown in the following screenshot:

Enabling Windows Explorer integration is generally useful; you will benefit
from a convenient way to open a Git prompt in any folder by right-clicking on
the contextual menu.

Let Git be used in classic DOS command prompt, too, as shown in the following
screenshot:

www.it-ebooks.info

http://git-scm.com
http://git-scm.com/downloads
http://www.it-ebooks.info/

Chapter 1

[3]

Git is provided with an embedded Windows-compatible version of the famous Bash
shell from Linux, which we will use extensively. By doing this, we will also make Git
available to third-party applications, such as GUIs and so on. It will come in handy
when we give some GUI tools a try.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Git

[4]

Use defaults for line endings. This will protect you from future annoyances.

At the end of the process, we will have Git installed, and all its *nix friends will be
ready to use it.

Running our first Git command
Now, we have to test our installation. Is Git ready to rock? Let's find out!

Open a prompt and simply type git (or the equivalent, git --help), as shown in
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[5]

If Git has been installed correctly, typing git without specifying anything else will
result in a short help page, with a list of common commands. If not, try reinstalling
Git, ensuring that you have checked the Use Git from the Windows Command
Prompt option. Otherwise, Git will be available only within the embedded Bash shell.

So, we have Git up and running! Are you excited? Let's begin to type!

Setting up a new repository
The first step is to set up a new repository (or repo, for short). A repo is a container
for your entire project; every file or subfolder within it belongs to that repository,
in a consistent manner. Physically, a repository is nothing other than a folder that
contains a special .git folder, the folder where the magic happens.

Let's try to make our first repo. Choose a folder you like, and type the git init
command, as shown here:

Whoa! What just happened? Git created a .git subfolder. The subfolder (normally
hidden in Windows) contains some files and folders, as shown in the next screenshot:

At this point, it is not important for us to understand what is inside this folder. The
only thing you have to know is that you do not have to touch it, ever! If you delete it
or if you modify files inside by hand, you could get into trouble. Have I frightened
you enough?

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Git

[6]

Now that we have a repo, we can start to put files inside it. Git can trace the history
of any gender of files, text based or binary, small or large, with the same efficiency
(more or less, large files are always a problem).

Adding a file
Let's create a text file just to give it a try.

And now what? Is that all? No! We have to tell Git to put this file in your repo,
explicitly. Git doesn't do anything that you don't want it to. If you have some spare
files or temp ones in your repo, Git will not be compatible with them, but will only
remind you that there are some files in your repo that are not under version control
(in the next chapter, we will see how to instruct Git to ignore them when necessary).

Ok, back to the topic. I want MyFile.txt under the control of Git, so let's add it, as
shown here:

The git add command tells Git that we want it to take care of that file and check it
for future modifications.

Has Git obeyed us? Let's see.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

Using the git status command, we can check the status of the repo, as shown in
the following screenshot:

As we can see, Git has accomplished its work as expected. In this image, we can read
words such as branch, master, commit and unstage. We will look at them briefly,
but for the moment, let's ignore them.

Commit the added file
At this point, Git knows about MyFile.txt, but we have to perform another step
to fix the snapshot of its content. We have to commit it using the appropriate git
commit command. This time, we will add some flavor to our command, using the
--message (or -m) subcommand, as shown here:

Press the Enter key.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Git

[8]

Feel the magic—a new branch is born!

With the commit of MyFile.txt, we have finally fired up our repo. It now has a
master branch with a file within it. We will play with branches in the forthcoming
chapters. Right now, think of it as a course of our repository, and keep in mind that a
repository can have multiple courses that often cross each other.

Modify a committed file
Now, we can try to make some modifications to the file and see how to deal with it in
the following screenshot:

As you can see, Bash shell warns us that there are some modifications painting the
name of the modified files in red. Here, the git status command informs us that
there is a file with some modifications and that we need to commit it if we want to
save this modification step in the repository history.

However, what does no changes added to commit mean? It is simple. Git makes
you take a second look at what you want to include in the next commit. If you have
touched two files but you want to commit only one, you can add only that one.

If you try to do a commit without skipping the add step, nothing will happen. We
will see this behavior in depth in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

So, let's add the file again for the purpose of getting things ready for the next commit.

Let's do another commit, this time, avoiding the --message subcommand. So, type
git commit and hit the Enter key.

Fasten your seatbelts! You are now entering into a piece of code history!

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Git

[10]

What is that? It's Vim (Vi Improved), an ancient and powerful text editor. You can
configure Git to use your own preferred editor, but if you don't do it, this is what
you have to deal with. Vim is powerful, but for newcomers, it can be a pain to use.
It has a strange way of dealing with text, so to start typing, you have to press i for
inserting text, as shown in the following screenshot:

Once you have typed your commit message, you can press Esc to get out of the
editing mode. Then, you can type the :w command to write changes and the :q
command to quit. You can also type the command in pairs as :wq.

After that, press Enter and another commit is done, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

Note that when you saved the commit message in Vim, Git automatically dispatches
the commit work, as you can see in the preceding screenshot.

Well done! Now, it's time to recap.

Summary
In this chapter, you learned that Git is not so difficult to install, even on a non-Unix
platform such as Windows.

Once you have chosen a directory to include in a Git repository, you can see that
initializing a new Git repository is as easy as executing a git init command, and
nothing more. Don't worry now about saving it on a remote server and so on. It's not
mandatory to save it; you can do this when you need to, preserving the entire history
of your repo. This is a killer feature of Git and DVCS in general. You can comfortably
work offline and push your work to a remote location when the network is available,
without hassle.

In the end, we discovered one of the most important character traits of Git: it will
do nothing if you don't mention it explicitly. You also learned a little bit about the
add command. We were obliged to perform a git add command for a file when we
committed it to Git the very first time. Then, we used another command when we
modified it. This is because if you modify a file, Git does not expect that you want it
to be automatically added to the next commit (and it's right, I'll say).

In the next chapter, we will discover some fundamentals of Git.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[13]

Git Fundamentals – Working
Locally

In this chapter, we will go deep into some of the fundamentals of Git. It is essential
to understand how Git thinks about files, its way of tracking the history of commits,
and all the basic commands that we need to master in order to become proficient.

Repository structure and file status
life cycle
The first thing to understand while working with Git is how it manages
files and folders within the repository. This is the time to analyze a default
repository structure.

The working directory
In Chapter 1, Getting Started with Git, we created an empty folder and initialized a
new repository using the git init command (in C:\Repos\MyFirstRepo). Starting
from now, we will call this folder the working directory. A folder that contains an
initialized Git repository is a working directory. You can move the working directory
around your file system without losing or corrupting your repository.

Within the working directory, you also learned that there is a .git directory. Let's
call it the git directory from now on. In the git directory there are files and folders
that compose our repository. Thanks to this, we can track the file status, configure
the repository, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Locally

[14]

File statuses
In Chapter 1, Getting Started with Git, we used two different commands: git add and
git commit. These commands allowed us to change the status of a file, making Git
change its status from "I don't know who you are" to "You are in a safe place".

When you create or copy a new file in the working directory, the first state of the
file is untracked. This means that Git sees that there is something new, but it won't
take care of it (it would not track the new file). If you want to include the file in
your repository, you have to add it using the add command. Once it is added, the
state of the file becomes unmodified. It means that the file is new (Git says it is
unmodified because it never tracked changes earlier) and ready to be committed, or
it has reached the staging area (also called index). If you modify a file that is already
added to the index, it changes its status to modified.

The following screenshot explains the file status life cycle:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[15]

The staging area
The staging area or index is a virtual place that collects all the files you want to
include in the next commit. You will often hear people talk about staged files with
regard to Git, so take care of this concept. All the files (new or modified) you want
to include in the next commit have to be staged using the git add command. If you
staged a file accidentally, you have to unstage it to remove it from the next commit
bundle. Unstaging is not difficult; you can do it in many ways. Let me explain a
few concepts. This several ways to do the same thing is an organic problem of Git. Its
constant and fast evolution sometimes increases confusion, resulting in different
commands that do the same thing. This is because it will not penalize people used
to working in a particular manner, allowing them the time for some Git revision to
understand the new or better way. Fortunately, Git often suggests the best way to
do what you want to do and warns you when you use obsolete commands. When in
doubt, remember that there are man pages. You can obtain some useful suggestions
by typing git <command> --help (-h for short) and seeing what the command is
for and how to use it.

Unstaging a file
Well, back to our main topic. Before continuing, let's try to understand the unstaging
concept better. Open the repo folder (C:\Repos\MyFirstRepo) in Bash and follow
these simple steps:

1.	 Be sure to be in a clean state by typing git status. If Git says "nothing to
commit, working directory clean," we are ready to start.

2.	 Create a new file touch NewFile.txt.
3.	 Using git status again, verify that NewFile.txt is untracked.
4.	 Add it to the index so that Git can start tracking it. So, use the git add

NewFile.txt command and go on.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Locally

[16]

5.	 When done, use the suggested git reset HEAD <file> command to back
the file in the untracked status.

It should be clear now. It worked as expected: our file returned in the untracked
state, as it was before the add command.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[17]

Git reset is a powerful command, and it can completely
destroy your actual work if used improperly. Do not play with it
if you don't know exactly what you are doing.

Another way to unstage a file that you just added is to use the git rm command.
If you want to preserve the file on your folder, you can use the --cached option.
This option simply removes it from the index, but not from the filesystem. However,
remember that git rm is to remove files from the index. So, if you use the git rm
command on an already committed file, you actually mark it for deletion. The next
commit will delete it.

The time metaphor
Using the git reset command, we also get in touch with another fundamental of
Git, the HEAD pointer. Let's try and understand this concept.

A repository is made of commits, as a life is made of days. Every time you commit
something, you write a piece of the history.

The past
The past is represented by the previous commits that we did, as shown by C1 and C2
in the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Locally

[18]

The HEAD pointer is the reference to the last commit we did or the parent of the next
commit we will do, as shown in the diagram:

So, the HEAD pointer is the road sign that indicates the way to move one step back
to the past.

The present
The present is where we work. When a previous commit is done, it becomes part
of the past, and the present shows itself like this diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[19]

We have a HEAD reference that points out where we came from (the C2 commit).
Resetting to HEAD as we did earlier is a manner of going back in this initial state,
where there are no modifications yet. Then, we have the working directory. This
directory collects files added to the repository in the previous commits. Now, it is in
the untouched state. Within this place, we do our work in files and folders, adding,
removing, or modifying them.

Our work remains in the working directory until we decide to put it in the next
commit we will perform. Using the git add command, we add what we want to
promote to the next commit, marking them into the index, as shown in this diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Locally

[20]

With git rm --cached <file or folder>, you can unstage a file by removing it
from the index, as shown here:

With git reset --hard HEAD, we will go back to the initial state, losing all the
changes we made in the working directory.

At the end, once you commit, the present becomes part of the past. The working
directory comes back to the initial state, where all is untouched and the index is
emptied, as shown in this diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[21]

The future
What about the future? Well, even though Git is a very powerful tool, it can't predict
the future, not for now at least.

Working with repositories
Let's get our hands dirty!

If you are reading this book, you are probably a programmer, as I am. Using a
programming language and its source and binary files to exercise could be fine.
However, I don't want to distract you from understanding a language you probably
don't use every day. So, let's settle things once and for all. When needed, I will use
a nice markup language called Markdown (see http://daringfireball.net/
projects/markdown/).

Apart from being simple yet powerful, Markdown silently became the favorite
choice while typing readme files (for example, GitHub uses it extensively) or
comments in forums or other online discussion places, such as StackOverflow.
Mastering it is not our goal, but to be able to do the basic things is surely a skill that
can be useful in the future.

Before you proceed, create a new folder for exercises, for example, C:\Repos\
Exercises. We will use different folders for different exercises.

Unstaging a file
Consider the following scenario. You are in a new repository located in C:\Repos\
Exercises\Ch1-1. The working directory actually contains two files: first.txt
and second.txt. You have accidentally put both first.txt and second.txt in the
staging area, while you actually want to only commit first.txt. So, now:

•	 Remove the second.txt file from the index
•	 Commit the changes

The result of this is that only first.txt will be a part of the commit.

www.it-ebooks.info

http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
http://www.it-ebooks.info/

Git Fundamentals – Working Locally

[22]

Follow these simple steps to solve this simple task:

1.	 Create the C:\Repos\Exercises\Ch1-1 folder and open Bash inside it.
2.	 Use the git init command on the repository as we learned.
3.	 Create the first.txt and second.txt files and add them to the staging

area, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

At this point, remove the second.txt file and commit. This time, try to use the
handy git rm --cached command, as suggested here:

Well done!

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Locally

[24]

Viewing the history
Let's continue where we left off in Chapter 1, Getting Started with Git. Walk into
C:\Repos\MyFirstRepo and start a new Bash shell using the right-click shortcut.
Now, use the git log command to see the history of our repository, as shown in
this screenshot:

The git log command is very useful and powerful. With this command, we can get
all the commits that we did one by one, each one with its most important details. It's
now time to become more familiar with them.

Anatomy of a commit
Commits are the building blocks of a repository. Every repository is nothing more
than an ordered sequence of commits. If you have a math background, you have
probably already identified an acyclic direct graph in it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

The commit snapshot
Every time we commit something, Git wraps all the files included in a binary blob
file. This is one of the most important characteristics of Git. While other versioning
systems save files one by one (perhaps using deltas), Git produces a snapshot every
time you commit, storing all the files you have included in it. You can assume that a
snapshot is a commit, and vice versa.

The commit hash
The commit hash is the 40-character string we saw in logs. This string is the plate of
the commit, the way we can refer to it unequivocally. We will not fail to use it in our
little exercises.

Author, e-mail, and date
Git is for collaborating, too. So, it is important that every author signs every commit
it does to make it clear who did what.

In every commit, you will find the author's friendly name and their e-mail to get in
touch with them when necessary. If you are not happy with the actual author you
see, change it with the git config command, as shown here:

Configuring Git is quite simple. You have to know the name of the object to
configure (user.name in this example) and give it a git config <object>
"<value>" command. To change the e-mail, you have to change the user.email
configuration object.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Locally

[26]

If you want to see the value of an object, simply type git config <object> and
press Enter to get it.

There are three configuration levels: global, user, and repository. We will soon deal
with Git configuration in more detail.

Commit messages
In the first chapter, we made two commits, and every time, we added a commit
message. Adding a commit message is not only a good practice, it is mandatory. Git
would not accept commits without a relative commit message. This is a thing I really
appreciate. Let me explain it briefly.

In other versioning control systems, such as SVN, commit messages are optional.
Developers, we all know, are lazy people. When they are in a hurry or under stress,
the temptation to commit code without telling what feature of the software they
are going to add, modify, improve or delete is strong. In no time, you build a mute
repository with no change history, and you have to deal with commits that are
difficult to understand. In other words, welcome to hell.

Committing a bunch of files
At this point, probably, you are wondering if there is a way to add more than one file
at a time. Of course there is! With git add --all (-A), you add all of the files you
have in your working directory to the index. You can also use <filepattern> to add
only certain types of files; for example, with git add *.txt, you can add all text
files to the index.

Ignoring some files and folders by default
Often, we work with temp or personal files that we don't want to commit in
the repository. So, when you commit all files, it is useful to skip certain kinds of
files or folders.

To achieve this result, we can create a .gitignore file in the repository. Git will
read it and then skip the files and folders we listed inside it.

Let's try to do this in our repository, C:\Repos\MyFirstRepo. Perform the
following steps:

1.	 Browse to C:\Repos\MyFirstRepo.
2.	 Create a .gitignore file using your preferred editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

3.	 Put this text inside it:
=== This is a sample of .gitignore file ===
Ignore temp files
*.tmp

4.	 Save the file.
5.	 Add the file to the index.
6.	 Commit the .gitignore file.
7.	 Create a temp file fileToIgnore.tmp with a simple touch command.
8.	 Try to add all of the files in your working directory to the index and verify

that Git will not add anything.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Locally

[28]

Note that .gitignore file is not retroactive. If you have added some *.tmp files
to the index before introducing the .gitignore file, they will stay under revision
control. You have to remove them manually if you want to skip them.

The syntax of a .gitignore file is quite simple. Lines starting with # are comments,
and they will be ignored. In each line of the file, you can add something to skip. You
can skip a single file or folder, certain files by extension, as we did with *.tmp files,
and so on.

For the complete syntax of .gitignore see http://git-scm.com/docs/gitignore.

To add a file in the .gitconfig file even if it is marked to be
ignored, you can use the git add -f (--force) option.

Highlighting an important commit – Git tags
We said that commits have an ID and a lot of other useful information bundled with
binary blobs of files included. Sometimes, we want to mark a commit with a tag to
place a milestone in our repository. You can achieve this by simply using the git
tag –a <tag name> command, using –m to type the mandatory message:

$ git tag –a MyTagName –m "This is my first tag"

Tags will become useful in the future to keep track of important things such as a new
software release, particular bug fixes, or whatever you want to put on evidence.

Taking another way – Git branching
Now, it's time to introduce one of the most used features of a versioning system:
branching. This is a thing that you will use extensively and a thing that Git does well.

Anatomy of branches
A branch is essentially another way your repository takes. While programming, you
will use branches to experiment with changes, without breaking the working code.
You will use them to keep track of some extensive work, such as the development
of a new feature, to maintain different versions or releases of your project. To put it
simply, you will use it always.

www.it-ebooks.info

http://git-scm.com/docs/gitignore
http://www.it-ebooks.info/

Chapter 2

[29]

When in a Git repository, you are always in a branch. If you pay attention to the Bash
shell, you can easily find the branch that you are on at the moment. It is always at the
prompt, within brackets, as shown here:

The master branch is, conventionally, the default branch. When you do your first
commit in a brand new repo, you actually do the first commit in the master branch.

During the course of the book, you will learn that the master branch will often
assume an important role. We will only deploy code from that point, and we will
never work directly in the master branch.

Looking at the current branches
Let's start using the git branch command alone. If you do this, you will get a list of
the branches included in the current repository:

$ git branch

We will get the following response:

As expected, Git tells us that we have only the master branch. The branch is
highlighted with a star and green font just because this is our actual branch, the
branch in which we are located at the moment.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Locally

[30]

Creating a new branch
Now, let's start creating a new branch for a new activity.

Open the Bash shell in C:\Repos\MyFirstRepo and create a new branch from
where you are using the git branch command, followed by the name of the branch
we want to create. Let's assume that the name of the branch is NewWork:

$ git branch NewWork

Well, it seems nothing happened and we are still in the master branch as we can
see in the following screenshot:

Git sometimes is a man of few words. Type the git branch command again to get a
list of the actual branches:

Hey, there's a NewWork branch now!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

Switching from branch to branch
The only thing we have to do now is to switch to the NewWork branch to begin
working on this separate argument. To move around from one branch to another,
we will use the git checkout command. Type this command followed by the
branch name to switch to:

$ git checkout NewWork

This time, Git gave us a short message, informing us that we have switched to the
NewWork branch. As you can see, NewWork is within brackets in place of master,
indicating the actual branch to us:

Super easy, isn't it?

Understanding what happens under the hood
At this point, nothing special seems to have happened. However, you will soon
change your mind. Just to give you a visual aid, consider this figure:

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Locally

[32]

Assume that our last commit on the master branch was the C3 commit. At this point,
we now have two other pointers: the master branch pointer and the NewWork branch
pointer.

If you have used Subversion or a similar versioning system earlier, at this point, you
would probably look for a NewWork folder in C:\Repos\MyFirstRepo. However,
unfortunately, you will not find it. Git is different, and now, we will see why.

Now, to better understand what a branch is for, add NewWorkFile.txt, stage it,
and commit the work, as shown here:

At this point, we have a new commit in the NewWork branch. This commit is not a
part of the master branch, because it has been created in another branch. So, the
NewWork branch is ahead of the master branch, as shown in the following figure:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

Working with Git in this kind of a situation is ordinary administration, just like it
is in the day-to-day life of a developer. Creating a new branch is cheap and blazing
fast even in large repositories, because all the work is done locally. You can derive
multiple branches from a unique point, branch from a branch that branched into
another branch, and so on, creating all the ramifications you can manage without
going crazy.

Moving from a branch to another is easy. So, let's turn back to the master branch and
see what happens:

If you have used Subversion earlier, at this time, you are probably wondering at least
two things: why is there no NewWork folder containing files from that branch and,
most of all, what was the fate of the NewWorkFile.txt file.

In Apache Subversion (SVN), every branch (or tag) you checked out resides in a
separate folder (bloating your repository, after some time). In Git, there is a huge
difference. Every time you check out a branch, files and folders of the previous
branch are replaced with those contained in the new branch. Files and folders only
on the destination branch are restored, and those only on the previous branch are
deleted. Your working directory is constantly a mirror of the actual branch. To have
a look at another branch, you basically have to switch to it.

This aspect might look bad to you the first time, because seeing files and folders
disappear is scary at first. Then, you can't differentiate the two branches as we
probably did earlier by simply comparing the content of the two folders with your
preferred tool. If I can give you a piece of advice, don't lose heart about this (as I did
at the beginning): soon you will forget what you lost and you will fall in love with
what you gained.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Locally

[34]

A bird's eye view to branches
So, let's go back once again to the NewWork branch and have a look at the situation
with the aid of a visual tool, Git GUI. Open the C:\Repos\MyFirstRepo folder and
right-click inside it. Choose Git GUI from the contextual menu. A dialog box will
pop up as shown in the following screenshot:

Git GUI is not my preferred GUI tool, but you have it for free when installing Git.
So, let's use it for the moment.

Go to Repository | Visualize All Branch History. A new window will open, and
you will see the status of our current branches, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

We do not have the time to go into all the details here. As you become more
confident with Git fundamentals, you will learn little by little all the things you
see in the preceding picture.

If you don't want to leave the console to take a look, you could get a pretty output
log even on the console. Try this articulated git log command:

$git log --graph --decorate --pretty=oneline --abbrev-commit

This is a more compact view, but it is as clear as what we saw earlier.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Locally

[36]

Typing is boring – Git aliases
Before continuing, just a little warning. The last command we used is not the easiest
thing to remember. To get around this nuisance, Git offers the possibility of creating
your own commands, aliasing some of the verbose sequences.

To create an alias, we will use the git config command. So, let's try to create a tree
alias for this command:

$ git config --global alias.tree 'log --graph --decorate --pretty=oneline
--abbrev-commit'

So, the syntax to create aliases is as follows:

git config <level> alias.<alias name> '<your sequence of git commands>'

Using the --global option, we told Git to insert this alias at the user level so that
any other repository for my user account on this computer will have this command
available. We have three levels where we can apply config personalization:

•	 Repository level configs are only available for the current repo
•	 Global configs are available for all the repos for the current user
•	 System configs are available for all the users/repositories

To create a repository user-specific config, we used the --global option. For the
system level, we will use the --system option. If you don't specify any of these two
options, the config will take effect only in the repository that you are in now.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

Merging branches
Now that we finally got in touch with branches, let's assume that our work in the
NewWork branch is done and we want to bring it back to the master branch.

To merge two branches, we have to move to the branch that contains the other
branch commits. So, if we want to merge the NewWork branch into the master branch,
we would first have to check out the master branch. As seen earlier, to check out a
branch we have to type the following command:

$ git checkout <branch name>;

If you want to check out the previous branch you were in, it's even simpler. Type this
command:

$ git checkout –

With the git checkout – command, you will move in the previous branch without
having to type its name again as explained in the following screenshot:

Now, let's merge the NewWork branch into master using the git merge command:

$ git merge NewWork

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Locally

[38]

As you can see, merging is quite simple. With the git merge <branch to merge>
command, you can merge all the modifications in a branch into the actual branch as
shown in the following screenshot:

When we read console messages, we see that Git is telling us something interesting.
Let's take a look.

When Git says Updating 986a6dc..a0c7d61, it is telling us that it is updating
pointers. So now, we will have master, NewWork, and HEAD all pointing to the
same commit:

Fast-forward is a concept that we will cover soon. When we tell Git to not apply
this feature, in brief, this fast-forward feature (enabled by default) permits us to
merge commits from different branches, as they were done subsequently in the same
branch, obtaining a less-pronged repository.

Last, but not least, we have a complete report of what files are added, deleted, or
modified. In our case, we had just one change (an insertion) and nothing else. When
something is added, Git uses a green plus symbol +. When a deletion happens, Git
uses a red dash symbol -.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

Merge is not the end of the branch
This is a concept that sometimes raises some trouble. To avoid this, we will have a
quick glimpse of it. You don't have to wait for the work to be done before merging
another branch into your branch. Similarly, you don't have to think about merging as
the last thing you will do before cutting off the other branch on which you worked.

On the contrary, it's better if you merge frequently from branches you depend on,
because doing it after weeks or months can become a nightmare: too many changes
in the same files, too many additions or deletions. Don't make a habit of this!

Exercises
To understand some common merging scenarios, you can try to resolve these
small exercises.

Exercise 2.1
In this exercise we will learn how Git can handle automatically file modifications
when they are not related to the same lines of text.

What you will learn
Git is able to automerge modifications on the same files.

Scenario
1.	 You are in a new repository located in C:\Repos\Exercises\Ch2-1.
2.	 You have a master branch with two previous commits: the first commit with

a file1.txt file and the second commit with a file2.txt file.
3.	 After the second commit, you created a new branch called File2Split.

You realized that file2.txt is too big, and you want to split its content by
creating a new file2a.txt file. Do it, and then commit the modifications.

Results
Merging back File2Split in the master branch is a piece of cake. Git takes care of
deletion in file2.txt without spotting your conflicts.

Exercise 2.2
In this exercise we will learn how to resolve conflicts when Git cannot merge files
automatically.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Locally

[40]

What you will learn
Git will result in conflicts if automerging is not possible.

Scenario
1.	 You are in the same repository used earlier, C:\Repos\Exercises\Ch2-1.
2.	 On the master branch, you add the file3.txt file and commit it.
3.	 Then, you realize that it is better to create a new branch to work on file3.txt,

so you create the File3Work branch. You move in this branch, and you start to
work on it, committing modifications.

4.	 The day after, you accidentally move to the master branch and make some
modifications on the file3.txt file, committing it.

5.	 Then, you try to merge it.

Results
Merging the File3Work branch in master gives rise to some conflicts. You have to
solve them manually and then commit the merged modifications.

Deal with branches' modifications
As mentioned earlier, if you come from SVN at this point, you would be a little
confused. You don't "physically have on the disk" all the branches checked out on
different folders. Because of this, you cannot easily differentiate two branches to take
into account what a merge will cost in terms of conflicts to resolve.

Well, for the first problem, there is not an SVN-like solution. However, if you
really want to differentiate two checked out branches, you could copy the working
directory in a temp folder and check out the other branch. This is just a workaround,
but the first time can be a less traumatic way to manage the mental shift Git applies
in this field.

Diffing branches
If you want to do it in a more Git-like way, you could use the git diff command.
Let's give it a try by performing the following steps:

1.	 Open C:\Repos\MyFirstRepo and switch to the master branch.
2.	 Add some text to the existing NewFile.txt, and then save it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

3.	 Add a NewMasterFiles.txt file with some text within it. At the end,
add both files to the index and then commit them, as shown in the
following screenshot:

Now, try to have a look at the differences between the master and NewWork
repositories. Finding out the difference between the two branches is easy with
the git diff command:

$ git diff master..NewWork

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Locally

[42]

The syntax is simple: git diff <source branch>..<target branch>. The result,
instead, is not probably the clearest thing you have ever seen:

However, with a little imagination, you can understand that the differences are
described from the point of view of the NewWork branch. Git is telling us that some
things on master (NewFile.txt modifications and NewMasterFile.txt) are not
present in the NewWork branch.

If we change the point of view, the messages change to those shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

To better understand these messages, you can take a look at the diff
output at http://en.wikipedia.org/wiki/Diff_utility.

Another way to check differences is to use git log:

$ git log NewWork..master

This command lets you see commits that differ from the NewWork branch to the
master branch.

There is even a git shortlog command to give you a more compact view, as shown
in the following screenshot:

Using a visual diff tool
All these commands are useful for short change history. However, if you have a
more long change list to scroll, things would quickly become complicated.

Git lets you use an external diff tool of choice. On other platforms (for example,
Linux or Mac), a diff tool is usually present and configured, while on the Windows
platform, it is generally not present.

To check this, type this command:

$ git mergetool

www.it-ebooks.info

http://en.wikipedia.org/wiki/Diff_utility
http://www.it-ebooks.info/

Git Fundamentals – Working Locally

[44]

If you see a message like this, you would probably have to set your preferred tool:

Resolving merge conflicts
As we have seen, merging branches is not a difficult task. However, in
real-life scenarios, things are not that easy. We have conflicts, modifications
on both branches, and other weird things to fight. In this section, we will take
a look at some of them. However, first, remember one important thing: it needs
a little bit of discipline to make the most of Git.

You have to avoid at least two things:

•	 Working hard on the same files on different branches
•	 Rarely merging branches

Edit collisions
This is the most common kind of conflict: someone edited the same line in the
same file on different branches, so Git can't auto merge them for you. When this
happens, Git writes special conflict markers to the affected areas of the file. At this
point, we have to manually solve the situation, editing that area to fit our needs.

Let's try this by performing the following steps:

1.	 Open your repository located in C:\Repos\MyRepos.
2.	 Switch to the NewWork branch and edit NewFile.txt by modifying

the first line Added some text to the existing NewFile in Text has
been modified.

3.	 Add and commit the modification.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

4.	 Switch back to master and merge the NewWork branch.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Locally

[46]

As you can see, Git highlighted the conflict. A conflict-marked area begins with
<<<<<<< and ends with >>>>>>>. The two conflicting blocks themselves are divided
by a sequence of =======. To solve the conflict, you have to manually edit the file,
deciding what to maintain, edit, or delete. After that, remove the conflict markers
and commit changes to mark the conflict as resolved.

Once you resolve the conflicts, you are ready to add and commit:

Merge done, congratulations!

Resolving a removed file conflict
Removed file conflicts occur when you edit a file in a branch and another person
deletes that file in their branch. Git does not know if you want to keep the edited
file or delete it, so you have to take the decision. This example will show you how
to resolve this both ways.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

Keeping the edited file
Try again using NewFile.txt. Remove it from the NewWork branch and then modify
it in master:

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Locally

[48]

After that, merge NewWork in the master branch. As said earlier, Git spots a conflict.
Add NewFile.txt again in the master branch and commit it to fix the problem:

When resolving merge conflicts, try to commit without specifying a message,
using only the git commit command. Git will open the Vim editor, suggesting a
default merge message:

This can be useful to spot merge commits looking at the repository history in
the future.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

Resolving conflicts by removing the file
If you agree with the deletion of the file in the other branch, instead of adding it
again, remove it from your branch. So, use the git rm NewFile.txt command
even in the master branch and then commit to mark the conflict resolved.

Stashing
Working of different features in parallel does not make a developer happy, but
sometimes it happens. So, at a certain point, we have to break the work on a branch
and switch to another one. However, sometimes, we have some modifications that
are not ready to be committed, because they are partial, inconsistent, or even won't
compile. In this situation, Git prevents you from switching to another branch. You
can only switch from one branch to another if you are in a clean state:

To quickly resolve this situation, we can stash the modifications, putting them into a
sort of box, ready to be unboxed at a later time.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Locally

[50]

Stashing is as simple as typing the git stash command. A default description
will be added to your stash, and then modifications will be reverted to get back
in a clean state:

To list actual stashes, you can use the list subcommand:

Once you have done the other work, you can go back to the previous branch and
apply the stash to get back to the previous "work in progress" situation:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[51]

What we have seen is the most common scenario and most used approach, but
stashing is a powerful Git tool. You can have multiple stashes, apply a stash to a
different branch, or reverse apply a stash. You can even create a branch starting
from a stash. You can learn more about this on your own.

Summary
In this chapter, you learned the core concepts of Git: how it handles files and
folders, how to include or exclude files in commits that we do, and how commits
compose a Git repository.

Next, we explored the most used and powerful feature of Git, its ability to manage
multiple parallel branches. For a developer, this is the feature that saves you time
and headache while working on different parts of your project. This feature lets you
and your colleagues collaborate without conflicts.

At the end, we touched on Git's stashing ability, where you can freeze your
current work without having to commit an unfinished change. This helps you
develop good programmer habits, such as the one that tells you to not commit an
unfinished change.

In the next chapter, we will complete our journey of Git fundamentals, exploring
ways and techniques to collaborate with other people.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[53]

Git Fundamentals – Working
Remotely

In this chapter, we will finally start to work in a distributed manner, using remote
servers as a contact point for different developers. As we said earlier, Git is a
distributed version-control system. This chapter is for the distributed part.

Working with remotes
You know that Git is a tool for versioning files. However, it has been built with
collaboration in mind. In 2005, Linus Torvalds had the need for a light and efficient tool
to handle tons of patches proposed to the Linux kernel from a multitude of contributors.
He wanted a tool that would allow him and hundreds of other people to work on it
without going crazy. The pragmatism that guided its development gave us a very
robust layer to share data among computers, without the need of a central server.

A Git remote is another computer that has the same repository you have on your
computer. Every computer that hosts the same repository on a shared network can
be the remote of other computers:

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Remotely

[54]

So, a remote Git repository is nothing other than a remote copy of the same Git
repository we created locally. If you have access to that host via common protocols
such as SSH, HTTPS or the custom git:// protocol, you can keep your modification
with it in sync.

The great difference between Git and other distributed version control systems
(DVCS) to classical centralized versioning systems (VCS) such as Subversion is that
there's no central server where you can give custody of your repository. However,
you can have many remote servers. This allows you to be fault tolerant and have
multiple working copies where you can get or pull modifications, giving you
incredible flexibility.

To start working with a remote, we have to get one. Today, it is not difficult to
get a remote. The world has plenty of free online services that offer room for Git
repositories. One of the most commonly used repository is GitHub. Before starting,
note that GitHub offers free space for open source repositories, so everyone in the
world can access their code. Be careful, and don't store sensitive information such as
passwords and so on in your repository; they will be publicly visible.

Setting up a new GitHub account
GitHub offers unlimited free public repositories, so we can make use of them without
investing a penny. In GitHub, you have to pay only if you need private repositories,
for example, to store the closed source code on which you base your business.

Creating a new account is simple. Just perform the following steps:

1.	 Go to https://github.com.
2.	 Sign up using your e-mail.

www.it-ebooks.info

https://github.com
http://www.it-ebooks.info/

Chapter 3

[55]

When done, we are ready to create a brand new repository where we can push
our work:

Go to the Repositories tab, click on the green New button, and choose a name for
your repository:

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Remotely

[56]

For the purpose of learning, I will create a simple repository for my personal
recipes. These recipes are written using the Markdown markup language
(http://daringfireball.net/projects/markdown/).

Then, you can write a description for your repository. This is useful to allow people
who come to visit your profile to better understand what your project is intended
for. We create our repository as public because private repositories have a cost, as we
said earlier. Then, we initialize it with a README file. Choosing this GitHub makes a
first commit for us, initializing the repository that is now ready to use.

Cloning a repository
Now, we have a remote repository, so it's time to learn how to hook it locally. For
this, Git provides the git clone command.

www.it-ebooks.info

http://daringfireball.net/projects/markdown/
http://www.it-ebooks.info/

Chapter 3

[57]

Using this command is quite simple. All we need to know is the URL of the repository
to clone. The URL is provided by GitHub in the bottom-right corner of the repository
home page, as shown in the following screenshot:

To copy the URL, you can simply click on the clipboard button on the right-hand
side of the textbox.

So, let's try to follow these steps together:

1.	 Go to the local root folder, C:\Repos, for the repositories.
2.	 Open a Bash shell within it.
3.	 Type git clone https://github.com/fsantacroce/Cookbook.git.

Obviously, the URL of your repository will be different. As you can see
in this screenshot, GitHub URLs are composed by https://github.
com/<Username>/<RepositoryName>.git:

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Remotely

[58]

At this point, Git created a new Cookbook folder that contains the downloaded
copy of our repository. Inside, we will find a README.md file, a classical one for a
GitHub repository. In this file, you can describe your repository using the common
Markdown markup language to users who will chance upon it.

Uploading modifications to remotes
So, let's try to edit the README.md file and upload modifications to GitHub:

1.	 Edit the README.md file using your preferred editor. You can add, for
example, a new sentence.

2.	 Add it to the index and then commit.
3.	 Put your commit on the remote repository using the git push command.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

The git push command allows you to upload local work to a configured remote
location, in this case, a remote GitHub repository. There are a few things we have to
know about pushing. We can begin to understand the message Git gave us just after
we run the git push command.

What do I send to the remote when I push?
When you give the git push command without specifying anything else, Git sends
to the remote all the new commits you did locally in your actual branch. For new
commits, we will send only the local commits that have not been uploaded yet.

The messages that appeared earlier tell us that something is about to change in the
default behavior of the git push command. Before the incoming Git 2.0 release, when
you fire the push command without specifying anything else, the default behavior is
to push all the new commits in all the corresponding local-remote branches.

In this brand new Cookbook repository, we only have the master branch. However,
next, you will learn how to deal with the remote having many branches.

Pushing a new branch to the remote
Obviously, we can create and push a new branch to the remote to make our work
public and visible to other collaborators. For instance, I will create a new branch for
my first recipe; then, I will push this branch to the remote GitHub server. Follow
these simple steps:

1.	 Create a new branch, for instance, Pasta: git checkout –b Pasta.
2.	 Add to it a new file, for example, Spaghetti-Carbonara.md, and commit it.
3.	 Push the branch to the remote using git push -u origin Pasta.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Remotely

[60]

Before continuing, we have to examine in depth some things that happened after we
used the git push command.

The origin
With the git push –u origin Pasta command, we told Git to upload our Pasta
branch (and the commits within it) to the origin. The origin is the default remote
name of a repository, like master is the default branch name. When you clone a
repository from a remote, that remote becomes your origin alias. When you tell Git
to push or pull something, you often have to tell it about the remote you want to use.
Using the origin alias, you tell Git that you want to use your default remote.

If you want to see remotes actually configured in your repository, you could type a
simple git remote command, followed by -v (--verbose) to get some more details:

In the details, you will see the full URL of the remote.

You can add, update, and delete remotes using the git remote command. We will
make use of it when we need to. For now, just remember that there is a command
for that.

Tracking branches
Using the -u option, we told Git to track the remote branch. Tracking a remote
branch is the way to tie your local branch with the remote one. Note that this
behavior is not automatic; you have to set it if you want it (Git does nothing until
you ask for it!). When a local branch tracks a remote branch, you actually have a local
and remote branch that can be kept easily in sync. This is very useful when you have
to collaborate with some remote coworkers at the same branch, allowing all of them
to keep their work in sync with other people's changes.

Furthermore, consider that when you use the git fetch command, you will get
changes from all tracked branches. While you use the git push command, the
default behavior is to push to the corresponding remote branch only.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

To better understand the way our repository is now configured, try to type
git remote show origin:

As you can see, both the Pasta and master branches are tracked.

You can also see that your local branches are configured to push and pull to remote
branches with the same name. However, remember that it is not mandatory to have
local and remote branches with the same name. The local branch foo can track the
remote branch bar and vice versa; there are no restrictions.

Downloading remote changes
The first thing you have to learn when working with remote branches is to check
whether there are modifications to retrieve.

Checking for modifications and downloading them
The git fetch command is very helpful. To see it at work, create a new file directly
on GitHub using the following steps so that we can work with it:

1.	 Go to your GitHub dashboard and choose the Pasta branch.
2.	 Click the plus icon on the right-hand side of the repository name to

add a new file.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Remotely

[62]

3.	 Add a new empty file, for example, Bucatini-Amatriciana.md, and commit
it directly from GitHub:

Now, we can make use of git fetch:

The git fetch command downloads differences from the remote, but does not
apply them. With the help of git status, we will see more details:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

As you can see, Git tells us there is one downloaded commit we have to apply to
keep our branch in sync with the remote counterpart.

Applying downloaded changes
If push is the verb used to define the upload part of the work, pull is the verb used
to describe the action of downloading and applying remote changes. When you
pull something from a remote, Git will retrieve all the remote commits made after
your last pull from the branch you specify and merge them. Of course, the local
destination branch is the branch you are in now (if you don't explicitly specify
another one). So, finally, the pull command is the git fetch command plus the git
merge command (in the future, you can skip git fetch and use only git pull to
merge remote commits).

Now, use the git pull command to merge the brand new Bucatini-Amatriciana.
md file committed directly from GitHub:

Well done! Now, our Pasta branch is in sync with the remote one. We have the
Bucatini-Amatriciana.md file in our local branch, ready to be filled.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Remotely

[64]

Just to end this simple example, make some modifications to the new downloaded
file and push the commit to GitHub:

This time we have specified the branch where we want to push changes, so Git avoids
reminding us the default git push behavior is going to change in the next release.

Going backward: publish a local repository
to GitHub
Often, you will find yourself needing to put your local repository in a shared place
where someone else can look at your work. In this section, we will learn how
to achieve this.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[65]

Create a new local repository to publish by following these simple steps:

1.	 Go to our C:\Repos folder.
2.	 Create a new HelloWorld folder.
3.	 Init a new repository, as we did in Chapter 1, Getting Started with Git.
4.	 Add a new README.md file and commit it.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Remotely

[66]

Now, create the GitHub repository as we did previously. This time, leave it empty.
Don't initialize it with a README.md file; we already have one in our local repository:

At this point, we are ready to publish our local repository on GitHub or, more
specifically, add a remote to it.

Adding a remote to a local repository
To publish our HelloWorld repository, we simply have to add its first remote.
Adding a remote is quite simple: Use the command git remote add origin
<remote-repository-url>.

So, type git remote add origin https://github.com/fsantacroce/
HelloWorld.git in the Bash shell.

Adding a remote, like adding or modifying other configuration parameters, simply
consists of editing some text files in the .git folder. In the next chapter, we will take
a look at some of these files.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

Pushing a local branch to a remote repository
After adding a remote, push your local changes to the remote using git push -u
origin master:

That's all!

Social coding – collaborate using GitHub
GitHub's trademark is the so-called social coding. Right from the beginning, GitHub
made it easy to share code, track other people's work, and collaborate using two
basic concepts: forks and pull requests. In this section, I will illustrate these concepts
in brief.

Forking a repository
Forking is a common concept for a developer. If you have already used a GNU-
Linux-based distribution, you would know that there are some forefathers, such as
Debian, and some derived distro, such as Ubuntu. They are commonly called the
forks of the original distribution.

In GitHub, things are similar. At some point, you will find an interesting open-source
project that you want to modify slightly to perfectly fit your needs. At the same time,
you want to benefit from bug fixes and new features from the original project, all the
time keeping in touch with your work. The right thing to do in this situation is to
fork the project.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Remotely

[68]

However, first, remember that fork is not a Git feature, but a GitHub invention.
When you fork on GitHub, you get a server-side clone of the repository on your
GitHub account. If you clone your forked repository locally in the remote list, you
would find the origin alias that points to your account repository. The original
repository will generally assume the upstream alias (but this is not automatic, you
have to add it manually):

V1

V2

V3

V1

V2

V3

V1

V2

V3

Version Database

Version Database Version Database

GitHub - Original GitHub - Fork

Local Machine

upstream origin

For your convenience, the right command to add the upstream remote is $ git
remote add upstream https://github.com/<original-owner>/<original-
repository>.git.

Now, to better understand this feature, go to your GitHub account and try to fork
a common GitHub repository called Spoon-Knife, made by the octocat GitHub
mascot user. Perform the following steps:

1.	 Log in to your GitHub account.
2.	 Look for spoon-knife using the search textbox located in the top-left corner

of the page:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

3.	 Click on the first result, octocat/Spoon-Knife repository.
4.	 Fork the repository using the Fork button at the right of the page:

5.	 After a funny photocopy animation, you will get a brand new Spoon-Knife
repository on your GitHub account:

Now, you can clone this repository locally, as we did earlier:

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Remotely

[70]

As you can see, the upstream remote is not present. This is a convention, not a thing
that belongs to Git itself. To add this remote, type:
git remote add upstream https://github.com/octocat/Spoon-Knife.git

Now, you can keep your local repository in sync with the changes in your remote and
the origin alias. You can also get changes ones coming from the upstream remote,
the original repository you forked. At this point, you are probably wondering how to
deal with two different remotes. Well, it is easy. Simply pull from upstream and merge
those modifications in your local repository. Then, push them in your origin remote
in addition to your changes. If someone else clones your repository, they would receive
your work merged with the work done by someone else on the original repository.

Submitting pull requests
If you created a fork of a repository, this is because you are not a direct contributor
of the original project or simply because you don't want to make a mess in other
people's work before you are familiar with the code.

However, at a certain point, you realize that your work can be useful even for the
original project. You realize that you can implement a previous piece of code in a
better way, you can add a missing feature, and so on.

So, you find yourself needing to allow the original author to know you did
something interesting, to ask them if they want to take a look and, maybe, integrate
your work. This is the moment when pull requests come in handy.

A pull request is a way to tell the original author, "Hey! I did something interesting
using your original code. Do you want to take a look and integrate my work, if you
find it good enough?" This is not only a technical way to achieve the purpose of
integrating work, but it is even a powerful practice to promote code reviews (and
then the so-called social coding) as recommended by the eXtreme Programming
fellows (http://en.wikipedia.org/wiki/Extreme_programming).

www.it-ebooks.info

http://en.wikipedia.org/wiki/Extreme_programming
http://www.it-ebooks.info/

Chapter 3

[71]

One other reason to use a pull request is because you cannot push directly to the
upstream remote if you are not a contributor of the original project. Pull requests
are the only way. In small scenarios (such as a team of two or three developers
that works in the same room), probably, the fork and pull model represents an
overhead. So, it is more common to directly share the original repository with all the
contributors, skipping the fork and pull ceremony.

Creating a pull request
To create a pull request, you have to go to your GitHub account and make it directly
from your forked account. However, first, you have to know that pull requests can be
made only from separated branches. At this point of the book, you are probably used
to creating a new branch for a new feature or refactor purpose. So, this is nothing new.

To try, let's create a local TeaSpoon branch in our repository, commit a new file, and
push it to our GitHub account:

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Remotely

[72]

If you take a look at your account, you will find a surprise: in your Spoon-Knife
repository, there is now a new green button made on purpose to start a pull request:

Clicking on this button makes GitHub open a new page where we can adorn our
pull request to better support our work. We can let the original author know why
we think our work can be useful even in the original project.

However, let me analyze this new page in brief.

In the top-left corner, you will find what branches GitHub is about to compare
for you:

This means that you are about to compare your local TeaSpoon branch with the
original master branch of the octocat user. At the bottom of the page, you can see
all the different details (files added, removed, changed, and so on):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

In the central part of the page, you can describe the work you did in your branch.
After that, you have to click on the green Create pull request button to send your
request to the original author, allowing him to access your work and analyze it.
A green Able to merge sticker on the right-hand side informs you that these two
branches can be automatically merged (there are no unresolved conflicts, which is
always good to see, considering your work):

Now, the last step: click on the Create pull request button and cross your fingers.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Working Remotely

[74]

At this point a new conversation begins. You and the project collaborators can start
to discuss your work. During this period, you and other collaborators can change the
code to better fit common needs, until an original repository collaborator decides to
accept your request or discard it, thus closing the pull request.

Summary
In this chapter, we finally got in touch with the Git ability to manage multiple remote
copies of repositories. This gives you a wide range of possibilities to better organize
your collaboration workflow inside your team.

In the next chapter, you will learn some advanced techniques using well-known and
niche commands. This will make you a more secure and proficient Git user, allowing
you to easily resolve some common issues that occur in a developer's life.

www.it-ebooks.info

http://www.it-ebooks.info/

[75]

Git Fundamentals – Niche
Concepts, Configurations,

and Commands
This chapter is a collection of short but useful tricks to make our Git experience more
comfortable. In the first three chapters, we learnt all the concepts we need to take the
first steps into versioning systems using the Git tool; now it's time to go a little bit
more in depth to discover some other powerful weapons in the Git arsenal and see
how to use them (without shooting yourself in your foot, preferably).

Dissecting the Git configuration
In the first part of this chapter, we will learn how to enhance our Git configuration
to better fit our needs and speed up the daily work; now it's time to become familiar
with the configuration internals.

Configuration architecture
The configuration options are stored in plain text files. The git config command
is just a convenient tool to edit these files without the hassle of remembering where
they are stored and opening them in a text editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Niche Concepts, Configurations, and Commands

[76]

Configuration levels
In Git we have three configuration levels which are:

•	 System
•	 User
•	 Repository

There are different configuration files for every different configuration level.

You can basically set every parameter at every level according to your needs. If you
set the same parameters at different levels, the lowest-level parameter hides the top
level parameters; so, for example, if you set user.name at global level, it will hide the
one eventually set up at system level; if you set it at repository level, it will hide the
one specified at global level and the one eventually set up at system level.

SYSTEM LEVEL

REPOSITORY LEVEL

USER LEVEL

System level
The system level contains system-wide configurations; if you edit the configuration
at this level, every user and its repository will be affected.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[77]

This configuration is stored in the gitconfig file usually located in:

•	 Windows - C:\Program Files (x86)\Git\etc\gitconfig
•	 Linux - /etc/gitconfig
•	 Mac OS X - /usr/local/git/etc/gitconfig

To edit the parameters at this level, you have to use the --system option; please
note that it requires administrative privileges (for example, root permission on Linux
and Mac OS X). Anyway, as a rule of thumb, the edit configuration at system level is
discouraged in favor of per user configuration modification.

Global level
The global level contains user-wide configurations; if you edit the configuration at
this level, every user's repository will be affected.

This configuration is stored in the .gitconfig file usually located in:

•	 Windows - C:\Users\<UserName>\.gitconfig
•	 Linux - ~/.gitconfig
•	 Mac OS X - ~/.gitconfig

To edit the parameters at this level, you have to use the --global option.

Repository level
The repository level contains repository only configurations; if you edit the
configuration at this level, only the repository in use will be affected.

This configuration is stored in the config file located in the .git repository
subfolder:

•	 Windows - C:\<MyRepoFolder>\.git\config
•	 Linux - ~/<MyRepoFolder>/.git/config
•	 Mac OS X - ~/<MyRepoFolder>/.git/config

To edit parameters at this level, you can use the --local option or simply avoid
using any option as this is the default one.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Niche Concepts, Configurations, and Commands

[78]

Listing configurations
To get a list of all configurations currently in use, you can run the git config
--list option; if you are inside a repository, it will show all the configurations from
repository to system level. To filter the list, append --system, --global, or --local
options to obtain only the desired level configurations, as shown in the following
screenshot:

Editing configuration files manually
Even if it is generally discouraged, you can modify Git configurations by directly
editing the files. Git configuration files are quite easy to understand, so when you
look on the Internet for a particular configuration you want to set, it is not unusual
to find just the right corresponding text lines; the only little foresight to maintain in
those cases is that you always need to back up files before editing them. In the next
paragraphs, we will try to make some changes in this manner.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[79]

Setting up other environment configurations
Using Git can be a painful experience if you are not able to place it conveniently
inside your work environment. Let's start to shape some rough edges using a bunch
of custom configurations.

Basic configurations
In the previous chapters, we saw that we can change a Git variable value using
the git config command with the <variable.name> <value> syntax. In this
paragraph, we will make use of the config command to vary some Git behaviors.

Typos autocorrection
So, let's try to fix an annoying question about the typing command named typos.
I often find myself re-typing the same command two or more times; Git can help
us with embedded autocorrection, but we first have to enable it. To enable it, you
have to modify the help.autocorrection parameter, defining how many tenths of
a second Git will wait before running the assumed command; so by giving a help.
autocorrect 10 command, Git will wait for a second, as shown in the following
screenshot:

To abort the autocorrection, simply type Ctrl + C.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Niche Concepts, Configurations, and Commands

[80]

Now that you know about configuration files, you can note that the parameters
we set by the command line are in this form: section.parameter_name. You can
see the sections' names within [] if you look in the configuration file; for example,
you can find them in C:\Users\<UserName>\.gitconfig, as shown in the
following screenshot:

Push default
We already talked about the git push command and its default behavior. To avoid
such annoying issues, it is a good practice to set a more convenient default behavior
for this command.

There are two ways we can do this. The first one is to set Git to ask to us
the name of the branch we want to push every time, so a simple git push will
have no effects. To obtain this, set push.default to nothing, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[81]

As you can see, now Git pretends that you specify the target branch at every push.

This may be too restrictive, but at least you can avoid common mistakes like pushing
some personal local branches to the remote, generating confusion in the team.

Another way to save yourself from this kind of mistake is to set the push.default
parameter to simple, allowing Git to push only when there is a remote branch with
the same name as that of the local one, as shown in the following screenshot:

This action will push the local tracked branch to the remote.

Defining the default editor
Some people really don't like vim, even only for writing commit messages; if you are
one of those people, there is good news for you in that you can change it instead by
setting the core.default config parameter:

$ git config --global core.editor notepad

Obviously you can set all text editors on the market. If you are a Windows user,
remember that the full path of the editor has to be in the PATH environment variable;
basically, if you can run your preferred editor typing its executable name in a DOS
shell, you can use it even in a Bash shell with Git.

Other configurations
You can browse a wide list of other configuration variables at http://git-scm.com/
docs/git-config.

www.it-ebooks.info

http://git-scm.com/docs/git-config
http://git-scm.com/docs/git-config
http://www.it-ebooks.info/

Git Fundamentals – Niche Concepts, Configurations, and Commands

[82]

Git aliases
In Chapter 2, Git Fundamentals – Working Locally we already mentioned Git aliases
and their purpose; in this paragraph, I will suggest only a few more to help you
make things easier.

Shortcuts to common commands
One thing you can find useful is to shorten common commands like git checkout
and so on; therefore, these are some useful aliases:

$ git config --global alias.co checkout

$ git config --global alias.br branch

$ git config --global alias.ci commit

$ git config --global alias.st status

Another common practice is to shorten a command by adding one or more options
that you use all the time; for example set a git cm <commit message> command
shortcut to alias git commit –m <commit message>:

$ git config --global alias.cm "commit -m"

Creating commands
Another common way to customize the Git experience is to create commands you
think should exist, as we did in Chapter 2, Git Fundamentals – Working Locally with the
git tree command.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[83]

git unstage
The classic example is the git unstage alias:

$ git config --global alias.unstage 'reset HEAD --'

With this alias, you can remove a file from the index in a more meaningful way as
compared to the equivalent git reset HEAD <file> syntax:

$ git unstage myfile.txt

$ git reset HEAD myfile.txt

git undo
Do you want a fast way to revert the last ongoing commit? Create a git undo alias:

$ git config --global alias.undo 'reset --soft HEAD~1'

You will be tempted to use the --hard option instead of the --soft option, but simply
don't do it as it's generally a bad idea to make it too easy to destroy information, and
sooner or later, you will regret for deleting something important.

git last
A git last alias is useful to read about your last commit, which is shown here:

$ git config --global alias.last 'log -1 HEAD'

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Niche Concepts, Configurations, and Commands

[84]

git difflast
With git difflast alias, you can indeed see a difference from your last commit, as
shown here:

$ git config --global alias.difflast 'diff --cached HEAD^'

Advanced aliases with external commands
If you want the alias to run external shell commands instead of a Git subcommand,
you have to prefix the alias with a !:

$ git config --global alias.echo !echo

Suppose you are annoyed by the canonical git add <file> plus git commit
<file> sequence of commands, and you want to do it in a single shot; here you can
call the git command twice in sequence creating this alias:

$ git config --global alias.cm '!git add -A && git commit -m'

With this alias you commit all the files, adding them before, if necessary.

Have you noted that I set again the cm alias? If you set an already configured alias,
the previous alias will be overwritten.

There are also aliases that define and use complex functions or scripts, but I'll leave it
to the curiosity of the reader to explore these aliases. If you are looking for inspiration,
please take a look at mine at https://github.com/jesuswasrasta/GitEnvironment.

www.it-ebooks.info

https://github.com/jesuswasrasta/GitEnvironment
http://www.it-ebooks.info/

Chapter 4

[85]

Removing an alias
Removing an alias is quite easy; you have to use the --unset option, specifying the
alias to remove. For example, if you want to remove the cm alias, you have to run:

$ git config --global --unset alias.cm

Note that you have to specify the configuration level with the appropriate option; in
this case, we are removing the alias from the user (--global) level.

Aliasing the git command itself
I already said I'm a bad typewriter; if you are too, you can alias the git command
itself (using the default alias command in Bash):

$ alias gti='git'

In this manner, you will save some other keyboard strokes. Note that this is not a Git
alias but a Bash shell alias.

Git references
We said that a Git repository can be imagined as an acyclic graph, where every node,
the commit, has a parent and a unique SHA-1 identifier. But during the previous
chapters, we even used some references such as the HEAD, branches, tags, and so on.

Git manages these references as files in the .git/refs repository folder:

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Niche Concepts, Configurations, and Commands

[86]

If you open one of those files, you will find it inside the SHA-1 of the commit they
are tied to. As you can see, there are subfolders for tags and branches (called heads).

Symbolic references
The HEAD file instead is located in the .git folder, as shown in the following
screenshot:

HEAD is a symbolic reference; symbolic references are references that point to other
references, using the ref: <reference> syntax. In this case, the HEAD is currently
pointing to the master branch; if you check out another branch, you will see the file's
content change, as shown in the following screenshot:

Ancestry references
In Git you often need to reference the past (for example, the last commit); for this
scope, we can use two different special characters which are the tilde ~ and the caret ^.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[87]

The first parent
Suppose you want to completely delete the last x4y5z6 commit:

a1b2c3 x4y5z6

A way to do this is to move the HEAD pointer to the a1b2c3 commit, using the
--hard option:

$ git reset --hard a1b2c3

Another way to do this is to move the pointer back to the parent commit. To define the
parent, you have to specify a starting point reference, which can be the HEAD, a specific
commit, a tag, or a branch and then one of two special characters: the tilde ~, for the
first parent and the caret ^ for the second one (remember that commits can have two
parents when they represent a merge result).

Let's get under the lens of the tilde ~. With the <ref>~<number> notation, we can
specify how many steps backward we are going to take; going back to the example,
an equivalent of the previous command is this:

$ git reset --hard HEAD~1

The HEAD~1 notation tells Git to point to the first parent commit of the actual commit
(the HEAD, indeed). Note that HEAD~1 and HEAD~ are equivalent.

You can also go backward by more than one step, simply incrementing the number;
a HEAD~3 reference will point to the third ancestor of the HEAD:

HEAD~3

HEAD

The second parent
With the ^ caret character, instead we reference the second parent of a commit, but
only starting from the number 2; the ref^1 notation references the first parent, as
does the ref~1 notation whereas ref^ and ref~1 are equivalent. Also note that
ref^1 and ref^ are equivalent.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Niche Concepts, Configurations, and Commands

[88]

The ^ and ~ operators can be combined; here's a diagram showing how to reference
various commits using HEAD as the starting point:

Fifth commit on master

Merge branch 'my_branch'

First commit on branch

Fourth commit on master

Third commit on master

Second commit on master

First commit on master

...etc

Referencing commits from HEAD using ~ and ^

HEAD

HEAD~1 or HEAD^1

HEAD~1^2

HEAD~2 or HEAD~1^1

HEAD~3 or HEAD~2^1

etc...

World-wide techniques
In this section, you will raise your skills by learning some techniques that will come
in handy in different situations.

Changing the last commit message
This trick is for people who don't double-check what they're writing. If you pressed
the Enter key too early, there's a way to modify the last commit message, using the
git commit command with the --amend option:

$ git commit --amend -m "New commit message"

Please note that with the --amend option, you are actually redoing the commit, which
will have a new hash; if you already pushed the previous commit, changing the last
commit is not recommended; rather, it is deplorable and you will get in trouble.

Tracing changes in a file
Working on source code in a team, it is not uncommon to need to look at the last
modifications made to a particular file to better understand how it evolved over time.
To achieve this result, we can use the git blame <filename> command.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[89]

Let's try this inside the Spoon-Knife repository to see the changes made to the
README.md file during that time:

As you can see in the preceding screenshot, the result reports all the affected lines of
the README.md file; for every line you can see the commit hash, the author, the date,
and the row number of the text file lines.

Suppose now you found that the modification you are looking for is the one
made in the d0dd1f61 commit; to see what happened there, type the git show
d0dd1f61 command:

The git show command is a multipurpose command, it can show you one or more
objects; in this case we have used it to show the modification made in a particular
commit using the git show <commit-hash> format.

The git blame and git show commands have quite a long list of options; the
purpose of this paragraph is only to point the reader to the way changes should
be traced on a file; you can inspect other possibilities using the ever useful git
<command> --help command.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Niche Concepts, Configurations, and Commands

[90]

The last tip I want to suggest is to use the Git GUI:

With the help of GUI, things are much more easy to understand.

Cherry picking
The cherry picking activity consists of choosing existing commits from somewhere
else and applying them here. I will make use of an example to better explain how
you can benefit from this technique.

Suppose you and your colleague Mark are working on two different public branches
of the same repository; Mark found and fixed an annoying bug in the feat1 branch
that affects even your feat2 branch. You need that fix, but you can't (or don't want to)
merge his branch, so how can you benefit from his fix?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[91]

NANDO

MARK

Feat 1

Feat 2

a1b2c3

COMMIT THAT

CONTAINS THE

FIX

It's easy; get the commit that fixes that bug and apply it to your current branch, using
the git cherry-pick command:

$ git checkout feat2

$ git cherry-pick a1b2c3

That's all! Now the commit a1b2c3 performed by Mark in the feat1 branch has been
applied to the feat2 branch and committed as a new x4y5z6 commit, as shown in
the following screenshot:

NANDO

MARK

Feat 1

Feat 2

a1b2c3

COMMIT THAT

CONTAINS THE

FIX

x4y5z6

c
h
e
rr

y-
p
ic

k

The git cherry-pick command behaves just like the git merge command. If
Git can't apply the changes (for example, you get merge conflicts), it leaves you to
resolve the conflicts manually and make the commit yourself.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Niche Concepts, Configurations, and Commands

[92]

We can even pick commit sets if we want to by using the <starting-
commit>..<ending-commit> syntax:

$ git cherry-pick feat1~2..feat1~0

With this syntax, you are basically picking the last two commits from the
feat1 branch.

Tricks
In this section, I would suggest just a bunch of tips and tricks that I found useful in
the past.

Bare repositories
Bare repositories are repositories that do not contain working copy files but contain
only the .git folder. A bare repository is essentially for sharing; if you use Git in a
centralized way, pushing and pulling to a common remote (a local server, a GitHub
repository, or so on), you will agree that the remote has no interest in checking out
files you work on; the scope of that remote is only to be a central point of contact for
the team, so having working copy files in it is a waste of space, and no one will edit
them directly on the remote.

If you want to set up a bare repository, you have to use only the --bare option:

$ git init --bare NewRepository.git

As you may have noticed, I called it NewRepository.git, using a .git extension;
this is not mandatory but is a common way to identify bare repositories. If you
pay attention, you will note that even in GitHub every repository ends with the
.git extension.

Converting a regular repository to a bare one
It can happen that you start working on a project in a local repository and then you
feel the need to move it to a centralized server to make it available to other people
or locations.

You can easily convert a regular repository to a bare one using the git clone
command with the same --bare option:

$ git clone --bare my_project my_project.git

In this manner, you have a 1:1 copy of your repository, but in a bare version, ready to
be shared.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[93]

Backup repositories
If you need a backup, there are two commands you can use, one of which is for
archiving only files and the other is for backing up the entire bundle including the
versioning information.

Archiving the repository
To archive the repository without including the versioning information, you can
use the git archive command; there are many output formats of which ZIP is the
classic one:

$ git archive master --format=zip --output=../repbck.zip

Please note that using this command is not the same as backing up folders in the
filesystem; as you noticed, the git archive command can produce archives in a
smarter way, including only files in a branch or even in a single commit. By doing
this, you are archiving only the last commit, as shown in the following code:

$ git archive HEAD --format=zip --output=../headbck.zip

Archiving files in this way can be useful if you have to share your code with people
that don't have Git installed.

Bundling the repository
Another interesting command is the git bundle command. With git bundle you
can export a snapshot from your repository, and you can then restore it.

Suppose you want to clone your repository on another computer, and the
network is down or absent; with this command, you create a repo.bundle file
of the master branch:

$ git bundle create ../repo.bundle master

With these other commands, we can then restore the bundle in the other computer
using the git clone command, as shown here:

$ cd /OtherComputer/Folder

$ git clone repo.bundle repo -b master

www.it-ebooks.info

http://www.it-ebooks.info/

Git Fundamentals – Niche Concepts, Configurations, and Commands

[94]

Summary
In this chapter, you enhanced your knowledge about Git and its wide set of
commands. You finally understood how configuration levels work and how to set
your preferences using Git, by adding useful command aliases to the shell. Then
we looked at how Git deals with references, providing a way to refer to a previous
commit using its degree of relationship.

Furthermore, you added some key techniques to your skill set, as it is important to
learn something you will use as soon as you start to use Git extensively. You also
learned some simple tricks to help you use Git more efficiently.

www.it-ebooks.info

http://www.it-ebooks.info/

[95]

Obtaining the Most – Good
Commits and Workflows

Now that we are familiar with Git and versioning systems, it's time to look at the
whole thing from a much higher perspective to become aware of common patterns
and procedures.

In this chapter, we will walk through some of the most common ways to organize
and build meaningful commits and repositories. We will obtain not only a
well-organized code stack, but also a meaningful source of information.

The art of committing
While working with Git, committing seems the easiest part of the job: you add files,
write a short comment, and then, you're done. However, it is because of its simplicity
that often, especially at the very beginning of your experience, you acquire the bad
habit of doing terrible commits: too late, too big, too short, or simply equipped with
bad messages.

Now, we will take some time to identify possible issues, drawing attention to tips
and hints to get rid of these bad habits.

Building the right commit
One of the harder skills to acquire while programming in general is to split the work
in small and meaningful tasks.

Too often, I have experienced this scenario. You start to fix a small issue in a file. Then,
you see another piece of code that can be easily improved, even if it is not related to
what you are working on now. You can't resist it, and you fix it. At the end and after a
small time, you find yourself with tons of concurrent files and changes to commit.

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining the Most – Good Commits and Workflows

[96]

At this point, things get worse, because usually, programmers are lazy people. So,
they don't write all the important things to describe changes in the commit message.
In commit messages, you start to write sentences such as "Some fixes to this and
that", "Removed old stuff", "Tweaks", and so on, without anything that helps other
programmers understand what you have done.

Courtesy of http://xkcd.com/1296/

At the end, you realize that your repository is only a dump where you empty your
index now and then. I have seen some people committing only at the end of the day
(and not every day) to keep a backup of the data or because someone else needed the
changes reflected on their computer.

Another side effect is that the resulting repository history becomes useless for
anything other than retrieving content at a given point in time.

The following tips can help you turn your Version Control System (VCS) from a
backup system into a valuable tool for communication and documentation.

Make only one change per commit
After the routine morning coffee, you open your editor and start to work on a bug,
BUG42. While working around fixing the bug in the code, you realize that fixing
BUG79 will require tweaking just a single line of code. So, you fix it. However, you
not only change that awful class name, but also add a good-looking label to the form
and make a few more changes. The damage is done.

How can you wrap up all that work in a meaningful commit now? Maybe, in the
meantime, you went home for lunch, talked to your boss about another project,
and you can't even remember all the little things you did.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[97]

In this scenario, there is only one way to limit the damage: split the files to commit
among more than one commit. Sometimes, this helps to reduce the pain, but it is only
palliative. Very often, you modify the same file for different reasons, so doing this
is quite difficult, if not impossible. The last hope is to use git add -p command,
that let's you to stage only some modification on a file, grouping them in different
commit to separate topics.

The only way to definitely solve this problem is to only make one change per commit.
It seems easy, I know, but it is quite difficult to acquire this ability. There are no tools
for this. No one, but you, can help. It only needs discipline, the most lacking virtue in
creative people such as programmers.

There are some tips to pursue this aim; let's have a look at them together.

Split up features and tasks
As said earlier, breaking up the things to do is a fine art. If you know and adopt
some Agile movement techniques, you will have probably faced these problems.
So, you have an advantage; otherwise, you will need some more effort, but it is not
something that you can't achieve.

Consider that you have been assigned to add the Remember me check in the login
page of a web application, like the one shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining the Most – Good Commits and Workflows

[98]

This feature is quite small, but implies changes at different levels. To accomplish this,
you'll have to:

•	 Modify the UI to add the check control
•	 Pass the "is checked" information through different layers
•	 Store this information somewhere
•	 Retrieve this information when needed
•	 Invalidate (set it to false) following some kind of policy (after 15 days, after

10 logins, and so on)

Do you think you can do all these things in one shot? Yes? You are wrong! Even if
you estimate a couple of hours for an ordinary task, remember that Murphy's law is
in ambush. You will receive four calls, your boss will look for you for three different
meetings, and your computer will go up in flames.

This is one of the first things to learn: break up every work into small tasks. It
does not matter whether you use timeboxing techniques such as the Pomodoro
Technique; small things are always easy to handle. I'm not talking about split hairs,
but try to organize your tasks into things you can do in a defined amount of time,
hopefully a bunch of half hours, not days.

So, take a pen and paper and write down all the tasks, as we did earlier with the
login page example. Do you think you can do all those things in a small amount of
time? Maybe yes, maybe not: some tasks are bigger than others. That's OK; this is not
a scientific method. It's a matter of experience. Can you split a task and create two
other meaningful tasks? Do it.

Are you unable to do it? No problem; don't try to split tasks if they lose meaning.

"REMEMBER ME FEATURE"

- ADD CHECK TO PAGE
- PASS CHECKED TO
LAYER BELOW

- ...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[99]

Write commit messages before starting to code
Now, you have a list of tasks to do; pick the first and… start to code? No! Take
another piece of paper and describe every task's step with a sentence. Magically,
you will realize that every sentence can be the message of a single commit, where
you describe the features you deleted, added, or changed in your software.

This kind of prior preparation helps you define modifications to implement (letting
better software design to emerge). It also focuses on what is important and lowers
down the stress of thinking at the versioning part of the work during the coding
session. While you are facing a programming problem, your brain floods with little
implementation details related to the code you are working on. So, the fewer the
distractions, the better.

This is one of the best versioning-related hints I ever received. If you have just
a quarter of an hour to spare, I recommend that you read the Preemptive commit
comments blog post (https://arialdomartini.wordpress.com/2012/09/03/pre-
emptive-commit-comments/) by Arialdo Martini. This is where I learnt this trick.

Include the whole change in one commit
Making more than one change per commit is a bad thing. However, splitting a single
change into more than one commit is also considered harmful. As you may know, in
some trained teams, you do not simply push your code to production. Before that,
you have to pass some code quality reviews, where someone else tries to understand
what you did to decide if your code is good or not (that is, why there are pull requests,
indeed). You could be the best developer in the world. However, if the person at the
other end can't get a sense of your commits, your work would probably be refused.

To avoid these unpleasant situations, you have to follow a simple rule: don't do
partial commits. If time's up, if you have to go to that damn meeting (programmers
hate meetings) or whatever, remember that you can save your work at any moment
without committing, using the git stash command. If you want to close the
commit, because you want to push it to the remote branch for backup purposes,
remember that Git is not a backup tool. Back up your stash on another disk, put it in
the cloud, or simply end your work before leaving, but don't do commits like they
are episodes of a TV series.

One more time, Git is a software tool like any other and it can fail. Don't think that
just because you are using Git or other versioning systems, you don't need backup
strategies. Back up local and remote repositories just like you back up all the other
important things.

www.it-ebooks.info

https://arialdomartini.wordpress.com/2012/09/03/pre-emptive-commit-comments/
https://arialdomartini.wordpress.com/2012/09/03/pre-emptive-commit-comments/
http://www.it-ebooks.info/

Obtaining the Most – Good Commits and Workflows

[100]

Describe the change, not what you have done
Too often, I read (and often I wrote) commit messages such as "Removed this",
"Changed that", "Added that one", and so on.

Imagine that you are going to work on the common "lost password" feature on
your website. Probably, you will find a message like this adequate: "Added the lost
password retrieval link to the login page". This kind of commit message does not
describe what modifications the feature brings to you, but what you did (and not
everything). Try to answer sincerely. If you are reading a repository history, do you
want to read what every developer did? Or is it better to read the feature implemented
in every single commit?

Try to make the effort, and start writing sentences where the change itself is the subject,
not what you did to implement it. Use the imperative present tense (for example, fix,
add, implement), describing the change in a small subject sentence, and then, add
some details (when needed) in other lines of text. "Implement the password-retrieval
mechanism" is a good commit message subject. If you find it useful, then you can add
some other information to get a well formed message like this:

"Implement the password retrieval mechanism

 - Add the "Lost password?" link into the login page
 - Send an email to the user with a link to renew the password"

Have you ever written a changelog for a software by hand? I did; it's one of the
most boring things to do. If you don't like writing changelogs, like me, think of the
repository history as your changelog. If you take care of your commit messages, you
would get a beautiful changelog for free!

In the next section, I will group some other useful hints about good commit
messages.

Don't be afraid to commit
Fear is one of the most powerful emotions. It can drive a person to do the craziest
thing on Earth. One the most common reactions to fear is breakdown. You don't
know what to do, so you end up doing nothing.

This is a common reaction even when you begin to use a new tool such as Git,
where gaining confidence can be difficult. For the fear of making a mistake, you
don't commit until you are obligated. This is the real mistake; be scared. In Git, you
don't have to be scared. Maybe the solution is not obvious; maybe you have to dig
on the Internet to find the right way. However, you can get off with small or no
consequences, ever (well, unless you are a hard user of the --hard option).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[101]

On the contrary, you have to make the effort to commit often, as soon as possible.
The more frequently you commit, the smaller are your commits; the smaller are your
commits, the easier it is to read and understand the changelog. It is also easier to to
cherry-pick commits and do code reviews. To help myself get used to committing
this way, I followed this simple trick: write the commit message in Visual Studio
before starting to write any code.

Try to do the same in your IDE or directly in the Bash shell; it helps a lot.

Isolate meaningless commits
The golden rule is to avoid meaningless commits. However, sometimes, you need
to commit something that is not a real implementation, but only a cleanup, such as
deleting old comments, formatting rearrangement, and so on.

In these cases, it is better to isolate this kind of code change in separate commits.
By doing this, you prevent another team member from running towards you with
a knife in his hand, frothing at the mouth. Don't commit meaningless changes and
mix up them with real ones. Otherwise, other developers (and you, after a couple of
weeks) will not understand them while diffing.

The perfect commit message
Let me be honest; the perfect message does not exist. If you work alone, you will
probably find the best way for you. However, when in a team, there are different minds
and different sensibilities, so what is good for me may not be as good for another.

In this case, you have to sit around a table and discuss. You should try to end up
with a shared standard that probably would not be the one you prefer, but at least is
a way to start a common path.

Rules for a good commit message really depend on the way you and your team work
every day, but some common hints can be applied by everyone. They are described
in the following sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining the Most – Good Commits and Workflows

[102]

Writing a meaningful subject
The subject of a commit is the most important part; its role is to make clear what the
commit contains. Avoid technical details of other things that a common developer
can understand on opening the code. Focus on the big picture. Remember that every
commit is a sentence in the repository history. So, wear the hat of the changelog
reader and try to write the most convenient sentence for him, not for you. Use the
present tense, and write a sentence with a maximum of 50 characters.

A good subject is one like this, "Add the newsletter signup in homepage".

As you can see, I used the imperative past tense. More importantly I didn't say what I
have done, but what the feature does: it added a newsletter signup box to my website.

The 50 char rule is due to the way you use Git from the shell or GUI tools. If you start
to write long sentences, reviewing logs and so on can become a nightmare. So, don't
try to be the Stephen King of commit messages. Avoid adjectives and go straight to
the point. You can then write additional details lines.

Another thing to remember is to start with capital letters. Do not end sentences with
periods; they are useless and even dangerous.

Adding bulleted details lines, when needed
Often, you can't say all that you want in 50 chars. In this case, use details lines. In this
situation, the common rule is to leave a blank line after the subject, use a dash, and
go no longer than 72 chars:

"Add the newsletter signup in homepage

- Add textbox and button on homepage
- Implement email address validation
- Save email in database"

In these lines, add a few details, but not too many. Try to describe the original problem
(if you fixed it) or the original need, why these functionalities have been implemented
(what problem solves), and understand the possible limitations or issues.

Tie other useful information
If you use some issue and project-tracking systems, write down the issue number,
bug IDs or everything else that helps:

"Add the newsletter signup in homepage

- Add textbox and button on homepage
- Implement email address validation

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[103]

- Save email in database

#FEAT-123: closed"

Special messages for releases
Another useful thing is to write special format commit messages for releases so that
it will be easier to find them. I usually decorate subjects with some special characters,
but nothing more. To highlight a particular commit, such as a release one, there is the
git tag command, remember?

Conclusions
At the end, my suggestion is to try to compose your personal commit message
standard by following previous hints, looking at message strategies adopted by great
projects and teams around the Web, but especially by doing it. Your standard will
change for sure as you evolve as a software developer and Git user. So, start as soon
as possible, and let time help you find the perfect way to write a commit message.

At least, don't imitate them: http://www.commitlogsfromlastnight.com.

Adopting a workflow – a wise act
Now that you learned how to perform good commits, it's time to fly higher and think
about workflows. Git is a tool for versioning, but as with other powerful tools, like
knives, you can cut tasty sashimi or relieve yourself of some fingers.

The things that separate a great repository from a junkyard are the way you manage
releases, the way you react when there is a bug to fix in a particular version of
your software, and the way you act when you have to make users beta-test the
incoming features.

These kinds of actions belong to ordinary administration for a modern software
project. However, very often, I still see teams get out of breath because of the poor
versioning workflows.

In this second part of the chapter, we will take a quick look at some of the common
workflows alongside the Git versioning system.

www.it-ebooks.info

http://www.commitlogsfromlastnight.com
http://www.it-ebooks.info/

Obtaining the Most – Good Commits and Workflows

[104]

Centralized workflows
As we used to do in other VCSes, such as Subversion and so on, even in Git, it is
common to adopt a centralized way of work. If you work in a team, it is often necessary
to share repositories with others, so a common point of contact becomes indispensable.

We can assume that if you are not alone in your office, you would adopt one of
the variations of this workflow. As we know, we can get all the computers of our
co-workers as remote, in a sort of peer-to-peer configuration. However, you usually
don't do this, because it becomes too difficult to keep every branch in every remote
in sync.

CENTRAL
REPOSITORY

MARC MARY JOHN

DEVELOPERS

How they work
In this scenario, you usually follow these simple steps:

1.	 Someone initializes the remote repository (in a local Git server, on GitHub,
or on Bitbucket).

2.	 Other team members clone the original repository on their computer and
start working.

3.	 When the work is done, you push it to the remote to make it available to
other colleagues.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[105]

At this point, it is only a matter of internal rules and patterns. It is improbable that
you and your colleague will work together simultaneously in the master branch,
unless you are indomitable masochists.

Feature branch workflow
At this point, you probably will choose a feature branch approach, where every single
developer works on their branch. When the work is done, the feature branch is
ready to be merged with the master branch. You will probably have to merge back
from the master branch first because one of your other colleagues has merged a
feature branch after you started yours, but after that you basically have finished.

MARC'S
FEATURE
BRANCH

MARY'S
FEATURE
BRANCH

JOHN'S
FEATURE
BRANCH

MASTER

GitFlow
The GitFlow workflow comes from the mind of Vincent Driessen, a passionate
software developer from the Netherlands. You can find his original blog post at
http://nvie.com/posts/a-successful-git-branching-model.

His workflow has gained success over the years, at the point that many other
developers (including me), teams and companies started to use it. Atlassian, a
well-known company that offers Git related services such as Stash or Bitbucket,
integrates the GitFlow directly in its GUI tool, the SourceTree.

www.it-ebooks.info

http://nvie.com/posts/a-successful-git-branching-model
http://www.it-ebooks.info/

Obtaining the Most – Good Commits and Workflows

[106]

Even the GitFlow workflow is a centralized one, and it is well described by
this figure:

feature
branches

develop release
branches hotfixes master

Tag
0.1

Tag
0.2

Tag
1.0

Severe bug
fixed for

production:
hotfix 0.2

Incorporate
bugfix in
develop

Major
feature for

next release

Feature
for future
release

Ti
m

e

Start of
release

branch for
1.0

Only
bugfixes!

From this point on,
''next release''

means the release
1.0after

Bugfixes from
rel. branch

may be
continuously
merged back
into develop

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[107]

This workflow is based on the use of some main branches. What makes these
branches special is nothing other than the significance we attribute to them. These
are not special branches with special characteristics in Git, but we can certainly use
them for different purposes.

The master branch
In GitFlow, the master branch represents the final stage. Merging your work in
it is equal to making a new release of your software. You usually don't start new
branches from the master branch. You do it only if there is a severe bug you have to
fix instantly, even if that bug has been found and fixed in another evolving branch.
This way to operate makes you superfast when you have to react to a painful
situation. Other than this, the master branch is where you tag your release.

Hotfixes branches
Hotfixes branches are branches derived only from the master branch, as we said
earlier. Once you have fixed a bug, you merge the hotfix branch onto master so
that you get a new release to ship. If the bug has not been resolved anywhere else
in your repository, the strategy would be to merge the hotfix branch even into the
develop branch. After that, you can delete the hotfix branch, as it has hit the mark.

In Git, there is a trick to group similar branches: you have to name them using a
common prefix followed by a slash /. For the hotfix branches, I recommend the
hotfix/<branchName> prefix (for example hotfix/LoginBug of hotfix/#123 for
those who are using bug-tracking systems, where #123 is the bug ID).

These branches are usually not pushed to remote. You push them only if you need
the help of other team members.

The develop branch
The develop branch is a sort of beta software branch. When you start to implement
a new feature, you have to create a new branch starting from the develop branch.
You will continue to work in that branch until you complete your task.

After the task is completed, you can merge back to the develop branch and delete
your feature branch. Just like hotfix branches, these are only temporary branches.

Like the master branch, the develop branch is a never-ending branch. You will
never close nor delete it.

This branch is pushed and shared to a remote Git repository.

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining the Most – Good Commits and Workflows

[108]

The release branch
At some point, you need to wrap up the next release, including some of the features
you implemented in the last few weeks. To prepare an incoming release, you have
to branch from develop, assigning at the branch a name composed of the release
prefix. This will be followed by the numeric form of your choice for your release
branch (for example release/1.0).

Pay attention. At this stage, no more new features are allowed! You cannot merge
develop onto the release branch. You can only create new branches from that
branch for bug fixing. The purpose of this intermediate branch is to give the software
to beta testers, allowing them to try it and send you feedback and bug tickets.

If you have fixed some bugs onto the release branch, the only thing to remember
is to merge them even into the develop branch, just to avoid the loss of the bug fix.
The release branch will not be merged back to develop.

You can keep this branch throughout your life, until you decide that the software is
both mature and tested sufficiently to go in production. At this point, you merge the
release branch onto the master branch, making, in fact, a new release.

After the merge to master, you can make a choice. You could keep the release
branch open, if you need to keep alive different releases; otherwise, you can delete
it. Personally, I always delete the release branch (as Vincent suggests), because
I generally do frequent, small, and incremental releases (so, I rarely need to fix an
already shipped release). As you certainly remember, you can open a brand new
branch from a commit (a tagged one in this case) whenever you want. So, at most,
I will open it from that point only when necessary.

This branch is pushed and shared to a common remote repository.

The feature branches
When you have to start the implementation of a new feature, you have to create a
new branch from the develop branch. Feature branches start with the feature/
prefix (for example, feature/NewAuthenitcation or feature/#987 if you use some
feature- tracking software, as #987 is the feature ID).

You will work on the feature release until you finish your work. I suggest that you
frequently merge back from develop. In the case of concurrent modifications to the
same files, you will resolve conflicts faster if you resolve them earlier. Then, it is easier
to resolve one or two conflicts a time than dozens at the end of the feature work.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[109]

Once your work is done, you merge the feature onto develop and you are done.
You can now delete the feature branch.

Feature branches are mainly private branches. However, you could push them to the
remote repository if you have to collaborate on it with some other team mates.

Conclusion
I recommend that you take a look at this workflow, as I can assure you that there was
never a situation that I failed to solve using this workflow.

You can find a deeper explanation with the ready-to-use Git command on Vincent
Driessen's blog. You can even use GitFlow commands Vincent made to customize
his Git experience. Check them out on his GitHub account at https://github.com/
nvie/gitflow.

The GitHub flow
The previously described GitFlow has tons of followers, but it is always a matter of
taste. Someone else found it too complex and rigid for their situation. In fact, there
are other ways to manage software repositories that have gained consensus during
the last few years.

One of these is the workflow used at GitHub for internal projects and repositories.
This workflow takes the name of GitHub flow. It was first described by the
well-known Scott Chacon, former GitHubber and ProGit book author, on his blog
at http://scottchacon.com/2011/08/31/github-flow.html.

This workflow, compared to GitFlow, is better tailored for frequent releases. When
I say frequent, I say very frequently, even twice a day. Obviously, this kind of flow
works better on web projects, because to deploy it, you have to only put the new
release on the production server. If you develop desktop solutions, you need a
perfect oiled update mechanism to do the same.

GitHub software basically doesn't have releases, because they deploy to production
regularly, even more than once a day. This is possible due to a robust Continuous
Delivery structure, which is not so easy to obtain. It deserves some effort.

The GitHub flow is based on these simple rules.

www.it-ebooks.info

https://github.com/nvie/gitflow
https://github.com/nvie/gitflow
http://scottchacon.com/2011/08/31/github-flow.html
http://www.it-ebooks.info/

Obtaining the Most – Good Commits and Workflows

[110]

Anything in the master branch is deployable
Just like GitFlow, even in GitHub flow, deployment is done from the master
branch. This is the only main branch in this flow. In GitFlow, there are not hotfix,
develop, or other particular branches. Bug fixes, new implementation, and so on are
constantly merged onto the master branch.

Other than this, code in the master branch is always in a deployable state. When
you fix or add something new in a branch and then merge it onto the master branch,
you don't deploy automatically, but you can assume your changes will be up and
running in a matter of hours.

Branching and merging constantly to the master branch, which is the production-
ready branch, can be dangerous. You can easily introduce regressions or bugs, as no
one other than you can assure you have done a good job. This problem is avoided
by a social contract commonly adopted by GitHub developers. In this contract, you
promise to test your code before merging it to the master branch, assuring that all
automated tests have been successfully completed.

Creating descriptive branches off of the master
In GitFlow, you always branch from the master branch. So, it's easy to get a forest
of branches to look at when you have to pull one. To better identify them, in GitHub
flow, you have to use descriptive names to get meaningful topic branches. Even here,
it is a matter of good manners. If you start to create branches named stuff-to-do, you
would probably fail in adopting this flow. Some examples are new-user-creation,
most-starred-repositories, and so on (note the use of dashes). Using a common
way to define topics, you will easily find branches you are interested in, looking for
topics' keywords.

Pushing to named branches constantly
Another great difference between GitHub flow and GitFlow is that in GitHub
flow, you push feature branches to the remote regularly, even if you are the only
developer involved and interested in it. This is done even for backup purposes.
Even if I already exposed my opinion in merit, I can't say this is a bad thing.

A thing I appreciate about GitFlow is that this habit of pushing every branch to
the remote gives you the ability to see, with a simple git fetch command, all the
branches currently active. Due to this, you can see all the work in progress, even
that of your team mates.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[111]

Opening a pull request at any time
In Chapter 3, Git Fundamentals – Working Remotely, we talked about GitHub and made
a quick try with pull requests. We have seen that basically they are for contributing.
You fork someone else's repository, create a new branch, make some modifications,
and then ask for a pull request from the original author.

In GitHub flow, you use pull requests massively. You can even ask another
developer of your team to have a look at your work and help you, give you a hint,
or review the work done. At this point, you can start a discussion about using the
GitHub pull request to chat and involve other people, putting their usernames in CC.
In addition, the pull request feature lets you comment even a single line of code in a
different view, letting users involved proficiently discuss the work under revision.

Merging only after a pull request review
You can now understand that the pull requested branch stage we saw earlier
becomes a sort of review stage. Here, other users can take a look at the code and even
simply leave a positive comment, just a +1 to make other users know that they are
confident about the job, and they approve its merge into master.

After this step, when the CI server says that the branch still passes all the automated
tests, you are ready to merge the branch in master.

Deploying immediately after review
At this stage, you merge your branch into master, and the work is done. The
deployment is not instantly fired, but at GitHub, they have a very straight and robust
deploy procedure. They deploy big branches with 50 commits, but also branches
with a single commit and a single line of code change, because deployment is very
quick and cheap for them.

This is the reason why they can afford such a simple branching strategy, where you
put on the master branch, and then you deploy, without the need to pass through
the develop or release stage branch, like in GitFlow.

www.it-ebooks.info

http://www.it-ebooks.info/

Obtaining the Most – Good Commits and Workflows

[112]

Conclusions
I consider this flow very responsive and effective for web-based projects, where
basically you deploy to production without focusing too much on versions of
your software. Using only the master branch to derive and integrate branches is
faster than light. However, this strategy could be applied only if you have these
prerequisites:

•	 A centralized remote ready to manage pull requests (as GitHub does)
•	 A good shared agreement about branch names and pull requests usage
•	 A very robust deploy system

This is a big picture of this flow. For more details, I recommend that you visit
the GitHub related page at https://guides.github.com/introduction/flow/
index.html.

Other workflows
Obviously, there are many other workflows. I will spend just few words on the one
that (fortunately) convinced Linus Torvalds to realize the Git VCS.

The Linux kernel workflow
The Linux kernel uses a workflow that refers to the traditional way in which
Linus Torvalds has driven its evolution during these years. It is based on a
military-like hierarchy.

www.it-ebooks.info

https://guides.github.com/introduction/flow/index.html
https://guides.github.com/introduction/flow/index.html
http://www.it-ebooks.info/

Chapter 5

[113]

Simple kernel developers work on their personal branches, rebasing the master
branch in the reference repository. Then they push their branches to the lieutenant
developer's master branch. Lieutenants are developers who Linus assigned to
particular topics and areas of the kernel because of their experience. When a
lieutenants have done their work, they push it to the benevolent dictator master
branch (Linus branch). Then, if things are OK (it is not simple to cheat him), Linus
would push his master branch to the blessed repository, the one that developers use
to rebase from, before starting their work.

dictator

lieutenant lieutenant

developer
public

developer
public

developer
public

blessed
repository

Summary
In this chapter, we became aware of the effective ways to use Git. I personally
consider this chapter the most important for a new Git user, because it applies some
rules and discipline so that you will obtain the most from this tool. So, pick up a
good workflow (make your own, if necessary), and pay attention to your commits.
This is the only way to become a good versioning system user, not only in Git.

In the next chapter, we will see some tips and tricks to use Git even if you have to
deal with Subversion servers. Then, we will take a quick look at migrating from
Subversion to Git.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[115]

Migrating to Git
In this chapter, we will try to migrate a Subversion repository into a Git one,
preserving the changes history. Git and Subversion can coexist as Git has some
dedicated commands to exchange data with Subversion, and you can even continue
to use both.

The purpose of this chapter is to help developers who actually use Subversion to
start using Git instantly, even if the rest of the team continues to use Subversion. In
addition, the chapter covers definitive migration for people who decide to abandon
Subversion in favor of Git.

Before starting
In the first part of this chapter, we will take a look at some good practices to keep
safety and work on actual SVN repository with no hassles. Bear in mind that the
purpose of this chapter is only to give readers some hints; dealing with big and
complex repositories deserves a more prudent and articulated approach.

Prerequisites
To be able to do these experiments, you need a Subversion tool; on Windows, the
most used tool is the well-known TortoiseSVN (available at http://tortoisesvn.
net), which provides both command-line tools: GUI and shell integration.

I recommend to do a full installation of TortoiseSVN, including command-line tools
as we'll need some of them to make experiments.

www.it-ebooks.info

http://tortoisesvn.net
http://tortoisesvn.net
http://www.it-ebooks.info/

Migrating to Git

[116]

Working on a Subversion repository
using Git
In the first part of this chapter, we will see the most cautious approach while starting
to move away from Subversion, which is to keep the original repository using
Git to fetch and push changes. For the purpose of learning, we will create a local
Subversion repository, using both Subversion and Git to access its contents.

Creating a local Subversion repository
Without the hassle of remote servers, let's create a local Subversion repository as a
container for our experiments:

$ cd \Repos
$ svnadmin create MySvnRepo

Now there's nothing more and nothing less to be done here, and the repository is
now ready to be filled with folders and files.

Checking out the Subversion repository with
svn client
At this point, we have a working Subversion repository; we can now check it out in a
folder of our choice, which will become our working copy; in my case, I will use the
C:\Sources folder:

$ cd \Sources\svn
$ svn checkout file:///Repos/MySvnRepo

You now have a MySvnRepo folder under the Sources folder, ready to be filled
with your project files; but first let me remind you of a couple of things.

As you may know, a Subversion repository generally has the following
subfolder structure:

•	 /trunk: This is the main folder, where generally you have the code
under development

•	 /tags: This is the root folder of the snapshots you usually freeze and leave
untouched, for example /tags/v1.0

•	 /branches: This is the root folder of all the repository branches you will
create for feature development, for example /branches/NewDesign

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[117]

Subversion does not provide a command to initialize a repository with this layout
(commonly known as standard layout), so we have to build it up by hand.

At this point, we can import a skeleton folder that already contains the three
subfolders (/trunk, /branches, and /tags) with a command like this:

$ cd \Sources\svn\MySvnRepo

$ svn import /path/to/some/skeleton/dir

Otherwise, we can create folders by hand using the svn mkdir command:

$ cd \Sources\svn\MySvnRepo

$ svn mkdir trunk

$ svn mkdir tags

$ svn mkdir branches

Commit the folders we just created and the repository is ready:

svn commit -m "Initial layout"

Now add and commit the first file, as shown in the following code:

$ cd trunk

$ echo "This is a Subversion repo" > readme.txt

$ svn add readme.txt

$ svn commit -m "Readme file"

Feel free to add more files or import an existing project if you want to replicate a
more real situation; for import files in a Subversion repository, you can use the svn
import command, as you saw before:

$ svn import \MyProject\Folder

Later, we will add a tag and a branch to verify how Git interacts with them.

Cloning a Subversion repository from Git
Git provides a set of tools to cooperate with Subversion; the base command is
actually git svn; with git svn you can clone Subversion repositories, retrieve and
upload changes, and much more.

So, wear the Git hat and clone the Subversion repository using the git svn clone
command:

$ cd \Sources\git

$ git svn clone file:///Repos/MySvnRepo

www.it-ebooks.info

http://www.it-ebooks.info/

Migrating to Git

[118]

git svn clone usually runs smoothly on Linux boxes, while in Windows you get a
weird error message, as shown here:

Couldn't open a repository: Unable to open an ra_local session to URL

This happens because in Windows there are some problems in the git svn
command backport while using the file:// protocol.

Setting up a local Subversion server
To bypass this problem, we can use the svn:// protocol instead of file://.

To do this, we will use the svnserve command to start a Subversion server exposing
our repositories directory root. But first we have to edit some files to set up the server.

The main file is the svnserve.conf file; look at your MySvnRepo repository folder,
C:\Repos\MySvnRepo in this case, jump into the conf subfolder, and edit the file
uncommenting these lines (remove the starting #):

anon-access = read

auth-access = write

password-db = C:\Repos\MySvnRepo\passwd

authz-db = C:\Repos\MySvnRepo\authz

realm = MySvnRepo

Normally, full paths are unnecessary for the passwd and authz files, but in Windows
I find them mandatory, otherwise the Subversion server does not load them.

Now edit the passwd file, which contains the user's credentials, and add a new user:

[users]

adminUser = adminPassword

Then edit the authz file and set up groups and rights for the user:

[groups]

Admins = admin

Continuing with the authz file, set rights for repositories; the Admin will have read/
write access to all repositories (the section [/] means "all repository"):

[/]

@Admins = rw

* =

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[119]

At this point, we can start the server with this command:

$ svnserve -d --config-file C:\Repos\MySvnRepo\conf\svnserve.conf --root
C:\Repos

-d starts the server as a daemon; --config-file specifies the config file to load and
--root tells the server where the main root folder of all your repositories is.

Now we have a Subversion server responding at svn://localhost:3690. We can
finally clone the repository using Git:

$ cd \Sources\git

$ git svn clone svn://localhost/MySvnRepo/trunk

This time things will go smoothly; we are now talking with a Subversion server
using Git.

Adding a tag and a branch
Just to have a more realistic situation, I will add a tag and a branch; in this manner,
we will see how to deal with them in Git.

So, add a new file:

$ echo "This is the first file" > svnFile01.txt

$ svn add svnFile01.txt

$ svn commit -m "Add first file"

Then tag this snapshot of the repository as v1.0 as you know that in Subversion, a
tag or a branch is a copy of a snapshot:

$ echo "This is the first file" > svnFile01.txt

$ svn add svnFile01.txt

$ svn copy svn://localhost/MySvnRepo

svn://localhost/MySvnRepo/tags/v1.0 -m "Release 1.0"

Committing a file to Subversion using Git
as a client
Now that we have a running clone of the original Subversion repository, we can use
Git as it was a Subversion client. So add a new file and commit it using Git:

$ echo "This file comes from Git" >> gitFile01.txt

$ git add gitFile01.txt

$ git commit –m "Add a file using Git"

www.it-ebooks.info

http://www.it-ebooks.info/

Migrating to Git

[120]

Now we have to push this file to Subversion:

$ git svn dcommit

Well done! We can even use Git to fetch changes with the git svn fetch command,
update the local code using the git svn rebase command, and so on; for other
commands and options, I recommend that you read the main page of git svn --help.

Using Git as a Subversion client is not the best we can obtain, but at least it is a way
to start using Git even if you cannot abandon Subversion instantly.

Using Git with a Subversion repository
Using Git as a client of Subversion can raise some confusion due to the flexibility of Git
as compared to the more rigid way Subversion organizes files. To be sure to maintain a
Subversion-friendly way of work, I recommend that you follow some simple rules.

First of all, be sure your Git master branch is related to the trunk branch in
Subversion; as we already said, Subversion users usually organize a repository in
this way:

•	 a /trunk folder, which is the main folder
•	 a /branches root folder, where you put all the branches, each one located in

a separate subfolder (for example, /branches/feat-branch)
•	 a /tags root folder, where you collect all the tags you made (for example,

/tags/v1.0.0)

To adhere to this layout, you can use the --stdlayout option when you're cloning a
Subversion repository:

$ git svn clone <url> --stdlayout

In this manner, Git will hook the /trunk Subversion branch to the Git master
branch, replicating all the /branches and /tags branches in your local Git
repository and allowing you to work with them in a 1:1 synchronized context.

Migrating a Subversion repository
When possible, it is recommended to completely migrate a Subversion repository
to Git; this is quite simple to do and mostly depends on the size of the Subversion
repository and the organization.

If the repository follows the standard layout as described before, a migration is only
a matter of minutes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[121]

Retrieving the list of Subversion users
If your Subversion repository has been used from different people, you are probably
interested in preserving the commit author's name, which is true even in the new
Git repository.

If you have the awk command available (maybe using Cygwin in Windows), there is
a script here that fetches all the users from Subversion logs and appends them to a
text file we can use in Git while cloning to perfectly match the Subversion users, even
in Git-converted commits:

$ svn log -q | awk -F '|' '/^r/ {sub("^ ", "", $2); sub(" $", "", $2);
print $2" = "$2" <"$2">"}' | sort -u > authors.txt

Now we will use the authors.txt file in the next cloning step.

Cloning the Subversion repository
To begin the migration, we have to locally clone the Subversion repository as we
did before; I recommend once more adding the --stdlayout option to preserve the
branches and tags and then to add the -A option to let Git convert commit authors
while cloning:

$ git svn clone <repo-url> --stdlayout –-prefix svn/ -A authors.txt

In case the Subversion repository has trunks, branches, and tags located in other
paths (with no standard layout), Git provides you with a way to specify them with
the --trunk, --branches, and --tags options:

$ git svn clone <repo-url> --trunk=<trunk-folder> --branches=<branches-
subfolder> --tags=<tags-subfolder>

When you fire the clone command, remember that this operation can be time-
consuming; in a repository with 1000 commits, it is not unusual to wait 15 to 30
minutes for this.

Preserving the ignored file list
To preserve the previously ignored files in Subversion, we can append the
svn:ignore settings to the .gitignore file:

$ git svn show-ignore >> .gitignore

$ git add .gitignore

$ git commit -m "Convert svn:ignore properties to .gitignore"

www.it-ebooks.info

http://www.it-ebooks.info/

Migrating to Git

[122]

Pushing to a local bare Git repository
Now that we have a local copy of our repository, we can move it to a brand new Git
repository. Here you can already use a remote repository on your server of choice,
which can even be GitHub or Bitbucket, but I recommend that you use a local bare
repository; we may as well do some other little adjustments (like renaming tags
and branches) before pushing files to a blessed repository. So, first initialize a bare
repository in a folder of your choice:

$ mkdir \Repos\MyGitRepo.git

$ cd \Repos\MyGitRepo.git

$ git init --bare

Now make the default branch to match the Subversion trunk branch name:

$ git symbolic-ref HEAD refs/heads/trunk

Then add a bare remote pointing to the bare repository just created:

$ cd \Sources\MySvnRepo

$ git remote add bare file:///C/Repos/MyGitRepo.git

Finally push the local cloned repository to the new bare one:

$ git push --all bare

We now have a brand new bare repository that is a perfect copy of the original
Subversion repository. We can now adjust branches and tags to better fit the usual
Git layout.

Arranging branches and tags
Now we can rename branches and tags to obtain a more Git-friendly scenario.

Renaming the trunk branch to master
The Subversion main development branch is /trunk, but in Git, as you know, we
prefer to call the main branch master; here's a way to rename it:

$ git branch -m trunk master

Converting Subversion tags to Git tags
Subversion treats tags as branches; they are all copies of a certain trunk snapshot. In
Git, on the contrary, branches and tags have a different significance.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[123]

To convert Subversion tags and branches into Git tags, the following simple script
does the work:

$ git for-each-ref --format='%(refname)' refs/heads/tags |

cut -d / -f 4 |

while read ref

do

 git tag "$ref" "refs/heads/tags/$ref";

 git branch -D "tags/$ref";

done

Pushing the local repository to a remote
You now have a local bare Git repository ready to be pushed to a remote server; the
result of the conversion is a full Git repository, where branches, tags, and commit
history have been preserved. The only thing you have to do by hand is to eventually
accommodate Git users.

Comparing Git and Subversion
commands
Here you can find a short and partial recap table, where I try to pair the most
common Subversion and Git commands to help Subversion users to quickly shift
their minds from Subversion to Git.

Subversion Git

Creating a repository

svnadmin create <repo-name>

svnadmin import <project-folder>

git init <repo-name>

git add .

git commit –m "Initial commit"

Getting the whole repository for the first time

svn checkout <url> git clone <url>

Inspecting local changes

svn status

svn diff | less

git status

git diff

www.it-ebooks.info

http://www.it-ebooks.info/

Migrating to Git

[124]

Subversion Git

Dealing with files (adding, removing, moving)

svn add <file>

svn rm <file>

svn mv <file>

git add <file>

git rm <file>

git mv <file>

Committing local changes

svn commit –m "<message>" git commit –a –m "<message>"

Reviewing history

svn log | less

svn blame <file>

git log

git blame <file>

Branching and Tagging

svn copy <source> <branch-name>
svn copy <source> <tag-name>

git branch <branch-name>

git tag -a <tag-name>

Remember: in Subversion tags and branches represents physical copies of a source
branch (the trunk, another branch or another tag), while in Git a tag is only a pointer to a
particular commit.

Merging

(assuming the branch was created in
revision 42 and you are inside a working
copy of trunk)
svn merge -r 42:HEAD <branch>

git merge <branch>

Summary
This chapter barely scratches the surface, but I think it'll be useful to get a sense of
the topic. If you have wide Subversion repositories, you will probably need better
training before starting to convert them to Git, but for small to medium ones, now
you know the fundamentals to begin with.

The only suggestion I want to share with you is to not be in a hurry; start by letting
Git cooperate with your Subversion server, reorganize your repository when it's
messy, do a lot of backups, and finally try to convert it; you will convert it more than
once, as I did, but in the end you will get more satisfaction from doing that.

In the next chapter, I will share with you some useful resources I found during my
career as a Git user.

www.it-ebooks.info

http://www.it-ebooks.info/

[125]

Git Resources
This chapter is a collection of resources I built during my experience with Git. I
will share some thoughts about GUI tools, web interfaces with Git repositories, and
learning resources, hoping they will act as a springboard for a successful Git career.

Git GUI clients
When beginning to learn a new tool, especially a wide and complex one like Git, it
can be useful to take advantage of some GUI tools that are able to picture commands
and patterns in a way that is more simple to understand.

Git benefits from a wide range of GUI tools, so it's only a matter of choice. I want to
tell you right away that there is no perfect tool, as frequently happens, but there are
enough of them to pick the one that fits your needs better.

Windows
As a Microsoft .NET developer, I use Windows 99 percent of the time. In spare time,
I play a little bit with Linux, but in that case I prefer to use the command line. In
this section, you will find tools I use or I have used in the past, while in the other
platform section I will provide only some hints based on words of other people.

Git GUI
Git has an integrated GUI, as we learnt from the previous chapters. Probably, it is
not one of the most eye-catching solution you will find, but for small issues it can be
enough. The reason for using it is that it is already installed when you install Git, and
that it is well integrated even with the command prompt; so for blaming files, see
history or interactive merging can be fired easily (just type git gui <command> on
your shell). But I have to come clean: I don't like it much.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Resources

[126]

In Windows, Git GUI will be installed following the language or the region you
specified on Windows. What's the problem? Well, the problem is that in non-English
languages, they translate everything - even command names! In Italian, instead of
merge I see Fusione; pushing gets translated as Propaga; and untracked files become
Modifiche non preparate. The problem is not the translation itself, but simply
that I find translating concepts or command names (like even Windows and other
Microsoft tools did in the past) perplexing; it is confusing and counterproductive.

TortoiseGit
If you have migrated from using Subversion to using Git, you have probably
already heard about TortoiseSVN, a well-crafted tool for dealing with Subversion
commands directly from Explorer, through the right-click shell integration.

TortoiseGit brings Git, instead of Subversion, to the same place. By installing
TortoiseGit, you will benefit from the same Explorer integration, leaving most Git
commands only a step away from you. Even if I discourage you to use localized
versions, TortoiseGit is available in different languages. Also, bear in mind that you
need to install Git in advance as it is not included in the TortoiseGit setup package.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[127]

GitHub for Windows
GitHub offers a stylish Modern UI based client. I have to admit that I snubbed it
at first, mostly because I was sure that I could use it only for GitHub repositories.
However, I realized that one can use it even with other remotes, but it's clear that the
client is tailored for GitHub. To use other remotes, you have to edit the config file by
hand, substituting the GitHub remote with the one you want.

If you want a general purpose client, probably this is not the best tool for you; but if
you work mostly on GitHub, it may likely be the best GUI in the market.

www.it-ebooks.info

http://www.it-ebooks.info/

Git Resources

[128]

Atlassian SourceTree
This is my favorite client. SourceTree is free like all the other tools; it comes from the
mind of Atlassian, the well-known company behind Bitbucket and other popular
services like Jira, Confluence, and Stash. SourceTree can handle all kinds of remotes,
offering facilities (like remembering passwords) to access the most popular services
like Bitbucket and GitHub.

It embeds the GitFlow way of organizing repositories by design, offering a convenient
button to initialize a repository with GitFlow branches, and integrating GitFlow
commands provided by the author. The most interesting thing I found at first was that
you can enable a window where SourceTree shows the equivalent Git command when
you use some of Git commands by user interface; in this manner, when you doubt you
can remember the right command for the job, you can use SourceTree to accomplish
your task and see what commands it uses to get the work done.

SourceTree is available even for Mac OS X.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[129]

Cmder
Cmder is not really a Git GUI, but a nicer portable console emulator you can use
instead of the classic Bash shell:

It looks nicer than the original shell; it has multi-tab support and a wide set of
configuration options to let you customize it as you prefer, thanks to ConEmu
and Clink projects. Finally yet importantly, it comes with Git embedded. You can
download it from GitHub at https://github.com/bliker/cmder.

www.it-ebooks.info

https://github.com/bliker/cmder
http://www.it-ebooks.info/

Git Resources

[130]

Mac OS X
As I already said, I have no experience with Mac OS X Git clients; the only information
I can share with you is that GitHub offers its client for free, even for Mac, like it does
Atlassian with SourceTree. There is no TortoiseGit for Mac, but I have heard about a
cool app called Git Tower. Please consider giving it a try as it seems very well crafted.

Another great tool is SmartGit, available for free for open-source projects:
http://www.syntevo.com/smartgit/

Linux
Linux is the reason for Git, so I think that it is the best place to work with Git. I play
with Linux now and then, and I usually use the Bash shell for Git.

For the ZSH shell lover, I suggest looking at http://ohmyz.sh/, an interesting
open source project where you can find tons of plugins and themes. About plugins,
there are some of them that let you enhance your Git experience with this famous
alternate console.

You can take a look at some Git GUI for Linux at

http://git-scm.com/download/gui/linux

www.it-ebooks.info

http://www.syntevo.com/smartgit/
http://ohmyz.sh/
http://git-scm.com/download/gui/linux
http://www.it-ebooks.info/

Chapter 7

[131]

Building up a personal Git server with
web interface
In the office where I work, I was the first person who started to use Git for
production code. At some point, after months of little trials in my spare time, I
gained courage and converted all the Subversion repositories, where I usually work
alone, into Git ones.

Unfortunately, firm IT policies forbid me to use external source code repositories; so
no GitHub or Bitbucket. To make things even worse, I also could not obtain a Linux
server, and take advantage of great web interfaces like Gitosis, GitLab, and so on. So
I started to Google around the web for a solution, and I finally found a solution that
can be useful for people in a similar condition.

The SCM Manager
SCM Manager (https://www.scm-manager.org/) is a very easy solution to share
your Git repositories in a local Windows network. It offers a standalone solution to
install and make it work on top of Apache Web Server directly in Windows. Though
it is built in Java, you can make it work even in Linux or Mac.

It can manage Subversion, Git, and Mercurial repositories, allowing you to define
users, groups, and so on. It has a good list of plugins too for other version control
systems and other development related tools like Jenkins, Bamboo, and so on.
There's also a Gravatar plugin and an Active Directory plugin, to let you and other
colleagues use default domain credentials to access your internal repositories.

www.it-ebooks.info

https://www.scm-manager.org/
http://www.it-ebooks.info/

Git Resources

[132]

I've been using this solution for about two years without a hitch, excluding only
some configuration related annoyances during updates, due to my custom path
personalization.

Learning Git in a visual manner
The last thing I would like to share with readers is a web app I found useful at the
very beginning, to better understand the way Git works.

LearnGitBranching (http://pcottle.github.io/learnGitBranching/) is a
tremendously helpful web app that offers you some exercises to help you grow your
Git culture. Starting from basic commit exercises, you learn how to branch, rebase,
and so on. However, the really cool thing is that at the right side of the page, you
will see a funny repository graph evolving in real time, following the commands you
type in the emulated shell.

www.it-ebooks.info

http://pcottle.github.io/learnGitBranching/
http://www.it-ebooks.info/

Chapter 7

[133]

Git on the Internet
In the end, I would suggest you to follow some resources that I usually follow to learn
new things and get in touch with other smart and funny Git users over the Internet.

Git community on Google+
This community is full of people who are happy to share their knowledge with you;
most of the coolest things I know about Git have been discovered here, at:

https://plus.google.com/u/0/communities/112688280189071733518

GitMinutes and Thomas Ferris
Nicolaisen's blog
Thomas is a skilled Git user, and a very kind person. On his blog, you will find many
interesting resources, including videos where he talks about Git at local German
programming events.

More than this, Thomas runs GitMinutes podcast series, where he talks about Git
with other people, discussing general purpose topics, tools opinions, and so on.

Take a look at www.tfnico.com and www.gitminutes.com.

www.it-ebooks.info

https://plus.google.com/u/0/communities/112688280189071733518
www.tfnico.com
www.gitminutes.com
http://www.it-ebooks.info/

Git Resources

[134]

Ferdinando Santacroce's blog
On my personal blog, http://jesuswasrasta.com/, I recently started a Git
Pills series, where I share with readers some things I discovered using Git, quick
techniques to get the job done, and how to recover from weird situations.

Summary
In this chapter, we went through some Git GUI clients. Even if I encourage people
to understand Git by using shell commands, I have to admit that for most common
tasks, using a GUI based tool makes me feel more comfortable, especially when
diffing or reviewing history.

Then we discovered that we could obtain a personal Git server with a fancy web
interface: the Internet has plenty of good pieces of software to achieve this target.

At the end, like my last suggestion, I mentioned some good resources to enhance
your Git comprehension: all the knowledge fields, hearing the voice of the experts,
and asking them questions is the most effective way to get your work done.

www.it-ebooks.info

http://jesuswasrasta.com/
http://www.it-ebooks.info/

[135]

Index
A
Agile movement techniques 97
ancestry references

about 86
first parent 87
second parent 87

Apache Subversion (SVN) 33
Atlassian SourceTree 128
autocorrection 79

B
bare repositories

about 92
regular repositories, converting to 92

basic configurations, Git
about 79
default editor, defining 81
push default 80, 81
typos autocorrection 79, 80

Bazaar 1
beta software branch 107
branch

anatomy 28, 29
creating 30
current branch, viewing 29
diffing 40-43
merge conflicts, resolving 44
merged modifications 40
merging 37, 38
merging scenarios 39
pushing, to remote 59, 60
switching 31-33
viewing 34, 35

branching 28
bunch of files

committing 26

C
caret character 86
centralized workflows

about 104
working 104

cherry picking activity 90
Cmder

about 129
URL, for downloading 129

code reviews 70
commit

anatomy 24
author 25
date 25
e-mail 25
reference link 103

commit hash 25
commit messages

about 26
writing, before coding 99

commit snapshot 25
committing

about 95
right commit, building 95-103

Concurrent Version System (CVS) 1
configuration architecture, Git 75
configuration files, Git

editing, manually 78
configuration levels, Git

about 76
global level 77

www.it-ebooks.info

http://www.it-ebooks.info/

[136]

repository level 77
system level 76, 77

configurations, Git
listing 78

configuration variables, Git
reference link 81

conflicts
resolving, by removing file 49

Continuous Delivery structure 109

D
develop branch, GitFlow 107
diff utility

URL 43
Distributed Version Control Systems

(DVCS) 1
downloaded remote changes

applying 63, 64

E
environment configurations, Git 79
eXtreme Programming

URL 70

F
feature branch, GitFlow 108
feature branch, workflow 105
file

committing to Subversion, with Git
as client 119

ignoring 26-28
unstaging 15-23

file statuses
about 14
modified 14
staged 14
unmodified 14
untracked 14

file status life cycle 13
folders

ignoring 26-28
forking 67

G
Git

about 1, 2, 53
configuration levels 76, 77
installing 2-4
learning, in visual manner 132
references, for downloading 2
Subversion repository, cloning from 117
used, for working on Subversion

repository 116
using, with Subversion repository 120

Git aliases
about 36, 82
advanced aliases, with external

commands 84
commands, creating 82
git command, aliasing 85
git difflast 84
git last 83
git undo 83
git unstage 83
removing 85
shortcut, to common commands 82

git archive command 93
git blame command 89
git bundle command 93
git cherry-pick command 91
git clone command 92
Git command, running

about 4, 5
added file, committing 7, 8
committed file, modifying 8-10
new repository, setting up 5, 6
text file, creating 6, 7

Git commands
versus Subversion commands 123, 124

Git community, on Google+
URL 133

git config command 75
Git configuration

architecture 75
dissecting 75

git difflast alias 84
git directory 13
git fetch command 61, 62

www.it-ebooks.info

http://www.it-ebooks.info/

[137]

GitFlow
about 105
conclusions 109
develop branch 107
feature branches 108
hotfixes branches 107
master branch 107
reference link, for blog post 105
reference link, for commands 109
release branch 108

Git GUI 125, 126
Git GUI clients

about 125
Linux 130
Mac OS X 130
Windows 125

Git GUI, for Linux
URL 130

GitHub
about 54
account, setting up 54-56
local repository, publishing to 64-66
URL 54

GitHub flow
about 109
references 109, 112
rules 109-112

GitHub for Windows 127
git last alias 83
git log command 24
git merge command 91
GitMinutes

URL 133
Git, on Internet

about 133
Git community, on Google+ 133
GitMinutes 133
reference link, for blogs 133

git push command 59, 80
Git references

about 85
ancestry references 86
symbolic references 86

Git remote 53
git reset command 17
git show command 89

Git tags
about 28
Subversion tags, converting to 122

git undo alias 83
git unstage alias 83

H
history, viewing of repository

about 24
bunch of files, committing 26
commit, anatomy 24
important commit, highlighting 28

hotfixes branches, GitFlow 107

I
index 14
installation, Git 2-4

L
Linux 130
Linux kernel

about 1
workflow 112

local branch
pushing, to remote repository 67

local repository
publishing, to GitHub 64-66
remote, adding to 66

local Subversion repository
creating 116

local Subversion server
setting up 118, 119

M
Mac OS X 130
main branches 107
man pages 15
Markdown

URL 21, 56
master branch, GitFlow 107
meaningless commits

isolating 101
Mercurial 1

www.it-ebooks.info

http://www.it-ebooks.info/

[138]

merge conflicts
collisions, editing 44-46
resolving 44

migrating, to Git
prerequisites 115

modification
uploading, to remotes 58, 59

O
origin alias 60

P
perfect commit message

about 101
bulleted details lines, adding 102
conclusions 103
meaningful subject, writing 102
special messages, for releases 103
useful information, adding 102

Perforce 1
personal Git server

building up, with web interface 131
Pomodoro Technique 98
Preemptive commit comments blog post

reference link 99

R
regular repositories

converting, to bare repositories 92
release branch, GitFlow 108
remote branch

tracking 60, 61
remote changes

downloading 61, 62
remote repository

local branch, pushing to 67
remotes

adding, to local repository 66
modification, uploading to 58, 59
new branch, pushing to 59, 60
working with 53, 54

removed file conflict
edited file, keeping 47, 48
resolving 46

repository
archiving 93
backing up 93
bundling 93
cloning 56-58
file, unstaging 21-23
forking 67-70
working with 21

repository only configurations 77
repository structure 13

S
SCM Manager

about 131
URL 131

social coding
about 67
pull requests, creating 71-74
pull requests, submitting 70
repository, forking 67-70

staging area 14, 15
standard layout 117
stashing 49, 50
Subversion commands

versus Git commands 123, 124
Subversion repository

branch, adding 119
checking out, with svn client 116, 117
cloning 121
cloning, from Git 117
Git, using with 120
tag, adding 119
working on 116

Subversion repository, migrating
about 120
branches, adding 122
ignored files, preserving 121
list of Subversion users, retrieving 121
local repository, pushing to remote 123
pushing, to local bare Git repository 122
tags, adding 122
trunk branch, renaming to master 122

Subversion (SVN) 1
Subversion tags

converting, to Git tags 122

www.it-ebooks.info

http://www.it-ebooks.info/

[139]

svn client
Subversion repository, checking

out with 116, 117
symbolic references 86
system-wide configurations 76

T
Team Foundation Server (TFS) 1
tilde character 86
time metaphor

about 17
future 21
past 17, 18
present 18-20

TortoiseGit 126
TortoiseSVN

about 126
URL 115

tricks
about 92
bare repositories 92

typos 79

U
user-wide configurations 77

V
Version Control System (VCS) 96
Vim (Vi Improved) 10
visual diff tool

using 43
visual manner

Git, learning in 132

W
web interface

personal Git server, building with 131
Windows 125
workflows

adopting 103
centralized workflows 104
feature branch workflow 105

working directory
about 13
file statuses 14

world-wide techniques
about 88
changes, tracing in file 88-90
cherry picking activity 90, 91
last commit message, modifying 88

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Git Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Git Version Control Cookbook
ISBN: 978-1-78216-845-4 Paperback: 340 pages

90 hands-on recipes that will increase your productivity
when using Git as a version control system

1.	 Filled with practical recipes that will teach you
how to use the most advanced features of the
Git system.

2.	 Improve your productivity by learning
to work faster, more efficiently, and with
more confidence.

3.	 Discover tips and tricks that will show you
when and how to use the advanced features
of Git.

Mastering Git [Video]
ISBN: 978-1-78355-413-3 Duration: 01:49 hours

Manage your projects with the aid of hands-on
exercises that make Git easy for you

1.	 Expand your confidence with Git and gain a
better understanding of how it works for easier
Source Control Management.

2.	 Have a smooth and effortless coding experience
with features such as Stash, Aliases, and more.

3.	 Go beyond the command line, and enjoy the
benefits of GUI clients for Git.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

GitLab Cookbook
ISBN: 978-1-78398-684-2 Paperback: 172 pages

Over 60 hands-on recipes to efficiently self-host your
own Git repository using GitLab

1.	 Get hands-on with day-to-day tasks to
effectively manage and administer your
repository with GitLab.

2.	 Covers advanced topics like GitLab continuous
integration and LDAP integration.

3.	 Authored by a member of the GitLab core team,
this Cookbook gives practical insights into
installing and self-hosting your own GitLab
and GitLab CI server.

Git Best Practices Guide
ISBN: 978-1-78355-373-0 Paperback: 102 pages

Master the best practices of Git with the help of
real-time scenarios to maximize team efficiency
and workflow

1.	 Work with a versioning tool for continuous
integration using Git.

2.	 Learn how to make the best use of Git's features.

3.	 Comprehensible guidelines with useful
tricks and tips for effectively using Git for
collaborative and Agile development.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Git
	Installing Git
	Running our first Git command
	Setting up a new repository
	Adding a file
	Commit the added file
	Modify a committed file

	Summary

	Chapter 2: Git Fundamentals – Working Locally
	Repository structure and file status
life cycle
	Working directory
	File statuses

	Staging area
	Unstaging a file

	The time metaphor
	The past
	The present
	The future

	Working with repositories
	Unstaging a file

	Viewing the history
	Anatomy of a commit
	The commit snapshot
	The commit hash
	Author, e-mail, and date
	Commit messages

	Committing a bunch of files
	Ignoring some files and folders by default

	Highlighting an important commit: Git tags

	Taking another way – Git branching
	Anatomy of branches
	Looking at the current branches
	Creating a new branch
	Switching from branch to branch
	Understanding what happens under the hood
	Bird's eye view to branches
	Typing is boring – Git aliases

	Merging branches
	Merge is not the end of the branch

	Exercises
	Exercise 2.1
	Exercise 2.2

	Deal with branches' modifications
	Diffing branches
	Using a visual diff tool

	Resolving merge conflicts
	Edit collisions
	Resolving a removed file conflict

	Stashing
	Summary

	Chapter 3: Git Fundamentals – Working Remotely
	Working with remotes
	Setting up a new GitHub account
	Cloning a repository
	Uploading modifications to remotes
	What do I send to the remote when I push?
	Pushing a new branch to the remote

	The origin
	Tracking branches

	Downloading remote changes
	Checking for modifications and downloading them
	Applying downloaded changes

	Going backward: publish a local repository
to GitHub
	Adding a remote to a local repository
	Pushing a local branch to a remote repository

	Social coding – collaborate using GitHub
	Forking a repository
	Submitting pull requests
	Creating a pull request

	Summary

	Chapter 4: Git Fundamentals – Niche Concepts, Configurations, and Commands
	Dissecting the Git configuration
	Configuration architecture
	Configuration levels
	Listing configurations
	Editing configuration files manually
	Setting up other environment configurations

	Git aliases
	Shortcuts to common commands
	Creating commands
	git unstage
	git undo
	git last
	git difflast

	Advanced aliases with external commands
	Removing an alias
	Aliasing git command itself

	Git references
	Symbolic references
	Ancestry references
	First parent
	Second parent

	World-wise techniques
	Changing the last commit message
	Tracing changes in a file
	Cherry picking

	Tricks
	Bare repositories
	Converting a regular repository to a bare one

	Backup repositories
	Archiving the repository
	Bundling the repository

	Summary

	Chapter 5: Obtaining the Most – Good Commits and Workflows
	The art of committing
	Building the right commit
	Make only one change per commit
	Include the whole change in one commit
	Describe the change, not what have you done
	Don't be afraid to commit
	Isolate meaningless commits
	The perfect commit message

	Adopting a workflow, a wise act
	Centralized workflows
	How they work

	Feature branch workflow
	GitFlow
	Master branch
	Hotfixes branches
	The develop branch
	The release branch
	The feature branches
	Conclusion

	GitHub flow
	Anything in the master branch is deployable
	Creating descriptive branches off of master
	Pushing to named branches constantly
	Opening a pull request at any time
	Merging only after pull request review
	Deploying immediately after review
	Conclusions

	Other workflows
	Linux kernel workflow

	Summary

	Chapter 6: Migrating to Git
	Before starting
	Prerequisites

	Working on a Subversion repository using Git
	Creating a local Subversion repository
	Checking out the Subversion repository with svn client
	Cloning a Subversion repository from Git
	Setting up a local Subversion server

	Adding a tag and a branch
	Committing a file to Subversion using Git
as a client

	Using Git with a Subversion repository
	Migrating a Subversion repository
	Retrieving the list of Subversion users
	Cloning the Subversion repository
	Preserving ignored file list
	Pushing to a local bare Git repository
	Arranging branches and tags
	Renaming trunk branch to master
	Converting Subversion tags to Git tags

	Pushing the local repository to a remote

	Comparing Git and Subversion commands
	Summary

	Chapter 7: Git Resources
	Git GUI clients
	Windows
	Git GUI
	TortoiseGit
	GitHub for Windows
	Atlassian SourceTree
	Cmder

	Mac OS X
	Linux

	Building up a personal Git server with web interface
	SCM Manager

	Learning Git in a visual manner
	Git on the Internet
	Git community on Google+
	GitMinutes and Thomas Ferris Nicolaisen blog
	Ferdinando Santacroce's blog

	Summary

	Index

