

Learn	Version	Control	with	Git
A	step-by-step	course	for	the	complete	beginner

Copyright	©	2014-2017	by	Tobias	Günther	Editor:	Alexander	Rinaß
Design:	Fabricio	Rosa	Marques	This	book	is	only	possible	because	of	a	team	of
outstanding	people.
Thank	you	Julian,	Alex,	Pete,	Danny,	Chris,	Sam,	Heiko,	and	Fabricio.

Trademarked	names	may	appear	in	this	book.	Rather	than	use	a	trademark	symbol	with	every	occurrence	of

a	trademarked	name,	we	use	the	names	only	in	an	editorial	fashion	and	to	the	benefit	of	the	trademark

owner,	with	no	intention	of	infringement	of	the	trademark.

The	information	in	this	book	is	distributed	on	an	“as	is”	basis,	without	warranty.	Although	every	precaution

has	been	taken	in	the	preparation	of	this	work,	the	author(s)	shall	not	have	any	liability	to	any	person	or

entity	with	respect	to	any	loss	or	damage	caused	or	alleged	to	be	caused	directly	or	indirectly	by	the

information	contained	in	this	work.

Version:	2017-01-01

Contents

Introduction

About	Being	Professional

About	This	Book

About	the	Author

The	Basics

What	is	Version	Control?

Why	Use	a	Version	Control	System?

Getting	Ready

Setting	Up	Git	on	Your	Computer

The	Basic	Workflow	of	Version	Control

Starting	with	an	Unversioned,	Local	Project

Starting	with	an	Existing	Project	on	a	Server

Working	on	Your	Project

Branching	&	Merging

Branching	can	Change	Your	Life

Working	in	Contexts

Working	with	Branches

Saving	Changes	Temporarily

Checking	Out	a	Local	Branch

Merging	Changes

Branching	Workflows

Remote	Repositories

About	Remote	Repositories

Local	/	Remote	Workflow

Connecting	a	Remote	Repository

Inspecting	Remote	Data

Integrating	Remote	Changes

Publishing	a	Local	Branch

Deleting	Branches

Advanced	Topics

Undoing	Things

Undoing	Local	Changes

Inspecting	Changes	in	Detail	with	Diffs

Dealing	with	Merge	Conflicts

Rebase	as	an	Alternative	to	Merge

Submodules

Workflows	with	git-flow

Handling	Large	Files	with	LFS

Authentication	with	SSH	Public	Keys

Tools	&	Services

Desktop	GUIs

Diff	&	Merge	Tools

Code	Hosting	Services

Closing	Thoughts

State	of	Play

Learning	Resources

Appendix

Appendix	A:	Version	Control	Best	Practices

Appendix	B:	Command	Line	101

Appendix	C:	Switching	from	Subversion	to	Git

Appendix	D:	Why	Git?

About	Being	Professional
What	does	it	take	to	be	a	professional?	Is	it	about	how	much	you	know?	About
knowing	your	topic	inside	out?	Of	course	it	is.	But	it‘s	only	one	part	of	the
equation.

The	other	part	is	about	using	the	right	tools	and	cultivating	the	right	habits.	You
won‘t	find	a	five-star	chef	who	works	with	a	cheap	knife	-	he	knows	that	he	will
produce	better	results	and	work	safer	with	the	best	tool	for	the	job.	Similarly,
you	won‘t	find	a	professional	tennis	player	who	doesn‘t	train	his	endurance	-	he
knows	that	tennis	isn‘t	just	about	hitting	the	ball	across	the	net.

Just	the	same,	you	won‘t	find	a	top	programmer,	web	developer,	or	web	designer
who	doesn‘t	use	version	control.	They	know	that	things	go	wrong	all	the	time	in
our	industry	and	therefore	prepare.	They	know	that	collaboration	must	be	as	safe
&	easy	as	possible	because	teamwork	is	paramount	in	our	industry.	They	know
that,	when	they’re	working	sloppy,	they’ll	have	to	pay	the	bill	in	the	end.

Don‘t	mind	a	little	bit	of	sweat	to	learn	version	control.	It‘s	a	big	step	on	your
way	to	becoming	a	better	professional.

About	This	Book
The	goal	of	this	book	is	to	get	you	started	with	version	control	and	Git	as	quickly
and	easily	as	possible.	Unlike	other	books	about	this	topic,	this	one	doesn‘t
require	a	master‘s	degree	in	computer	science	to	read	it.	It‘s	aimed	at	beginners
of	programming,	at	designers,	at	project	managers...	It	tries	not	to	require	too
much	prior	knowledge	on	the	technical	side.	It	tries	to	go	slowly.

That	being	said,	Git	and	version	control	in	general	remain	highly	technical
topics.	I	can‘t	spare	you	all	of	this,	but	I‘ll	try	to	explain	workflows	&
backgrounds	thoroughly	and	provide	a	lot	of	real-world	examples.

Since	everyone	comes	with	his	own,	unique	background,	it‘s	hard	to	determine	a
common	starting	point	for	everybody.	For	this	reason,	I	have	provided	various
basic	topics	in	the	appendix:

In	case	you‘re	still	unsure	if	you	should	use	Git	as	your	version	control
system,	Appendix	D:	Why	Git?	might	be	worth	a	look.

If	you’re	about	to	switch	from	SVN,	you	might	find	Appendix	C:	Switching
from	Subversion	to	Git	helpful.	It	gives	you	an	overview	of	the	differences
between	the	two	systems.

Should	you	need	an	introduction	to	working	on	a	command	line	interface,
you	should	definitely	take	a	look	at	Appendix	B:	Command	Line	101.

Have	fun	learning	Git!

About	the	Author

Tobias	Günther	is	the	CEO	and	founder	of	fournova,	a	small	software	startup
based	in	Germany.	The	company’s	product	Tower	helps	over	80,000	users	in
companies	like	Apple,	Google,	Amazon,	and	Ebay	to	easily	&	productively
work	with	the	Git	version	control	system.

Since	many	years,	Tobias	is	a	regular	speaker	on	conferences	large	and	small	for
topics	related	to	Git	and	version	control.	Additionally,	he	has	written	numerous
articles	and	tutorials	for	blogs	&	magazines	(for	example	for	the	“Tower	Blog”,
A	List	Apart,	Smashing	Magazine,	or	SixRevisions).

http://www.fournova.com
http://www.git-tower.com/?utm_source=learn-git&utm_medium=ebook&utm_campaign=learn-git

What	is	Version	Control?
You	can	think	of	a	version	control	system	(short:	“VCS”)	as	a	kind	of
“database”.	It	lets	you	save	a	snapshot	of	your	complete	project	at	any	time	you
want.	When	you	later	take	a	look	at	an	older	snapshot	(let‘s	start	calling	it
“version”),	your	VCS	shows	you	exactly	how	it	differed	from	the	previous	one.

Version	control	is	independent	of	the	kind	of	project	/	technology	/	framework
you‘re	working	with:

It	works	just	as	well	for	an	HTML	website	as	it	does	for	a	design	project	or
an	iPhone	app

It	lets	you	work	with	any	tool	you	like;	it	doesn‘t	care	what	kind	of	text
editor,	graphics	program,	file	manager	or	other	tool	you	use

Also,	don‘t	confuse	a	VCS	with	a	backup	or	a	deployment	system.	You	don‘t
have	to	change	or	replace	any	other	part	of	your	tool	chain	when	you	start	using
version	control.

A	version	control	system	records	the	changes	you	make	to	your	project‘s	files.
This	is	what	version	control	is	about.	It‘s	really	as	simple	as	it	sounds.

Why	Use	a	Version	Control	System?
There	are	many	benefits	of	using	a	version	control	system	for	your	projects.	This
chapter	explains	some	of	them	in	detail.

Collaboration

Without	a	VCS	in	place,	you‘re	probably	working	together	in	a	shared	folder	on
the	same	set	of	files.	Shouting	through	the	office	that	you	are	currently	working
on	file	“xyz”	and	that,	meanwhile,	your	teammates	should	keep	their	fingers	off
is	not	an	acceptable	workflow.	It‘s	extremely	error-prone	as	you‘re	essentially
doing	open-heart	surgery	all	the	time:	sooner	or	later,	someone	will	overwrite
someone	else‘s	changes.

With	a	VCS,	everybody	on	the	team	is	able	to	work	absolutely	freely	-	on	any
file	at	any	time.	The	VCS	will	later	allow	you	to	merge	all	the	changes	into	a
common	version.	There‘s	no	question	where	the	latest	version	of	a	file	or	the
whole	project	is.	It‘s	in	a	common,	central	place:	your	version	control	system.

Other	benefits	of	using	a	VCS	are	even	independent	of	working	in	a	team	or	on
your	own.

Storing	Versions	(Properly)

Saving	a	version	of	your	project	after	making	changes	is	an	essential	habit.	But
without	a	VCS,	this	becomes	tedious	and	confusing	very	quickly:

How	much	do	you	save?	Only	the	changed	files	or	the	complete	project?	In
the	first	case,	you‘ll	have	a	hard	time	viewing	the	complete	project	at	any
point	in	time	-	in	the	latter	case,	you‘ll	have	huge	amounts	of	unnecessary
data	lying	on	your	harddrive.

How	do	you	name	these	versions?	If	you‘re	a	very	organized	person,	you
might	be	able	to	stick	to	an	actually	comprehendible	naming	scheme	(if
you‘re	happy	with	“acme-inc-redesign_2013-11-12_v23”).	However,	as
soon	as	it	comes	to	variants	(say,	you	need	to	prepare	one	version	with	the
header	area	and	one	without	it),	chances	are	good	you‘ll	eventually	lose
track.

The	most	important	question,	however,	is	probably	this	one:	How	do	you
know	what	exactly	is	different	in	these	versions?	Very	few	people	actually
take	the	time	to	carefully	document	each	important	change	and	include	this
in	a	README	file	in	the	project	folder.

A	version	control	system	acknowledges	that	there	is	only	one	project.	Therefore,
there‘s	only	the	one	version	on	your	disk	that	you‘re	currently	working	on.
Everything	else	-	all	the	past	versions	and	variants	-	are	neatly	packed	up	inside
the	VCS.	When	you	need	it,	you	can	request	any	version	at	any	time	and	you‘ll
have	a	snapshot	of	the	complete	project	right	at	hand.

Restoring	Previous	Versions

Being	able	to	restore	older	versions	of	a	file	(or	even	the	whole	project)
effectively	means	one	thing:	you	can‘t	mess	up!	If	the	changes	you‘ve	made
lately	prove	to	be	garbage,	you	can	simply	undo	them	in	a	few	clicks.	Knowing
this	should	make	you	a	lot	more	relaxed	when	working	on	important	bits	of	a
project.

Understanding	What	Happened

Every	time	you	save	a	new	version	of	your	project,	your	VCS	requires	you	to
provide	a	short	description	of	what	was	changed.	Additionally	(if	it‘s	a	code	/
text	file),	you	can	see	what	exactly	was	changed	in	the	file‘s	content.	This	helps

you	understand	how	your	project	evolved	between	versions.

Backup

A	side-effect	of	using	a	distributed	VCS	like	Git	is	that	it	can	act	as	a	backup;
every	team	member	has	a	full-blown	repository	of	the	project	on	his	disk	-
including	the	project’s	complete	history.	Should	your	beloved	central	server
break	down	(and	your	backup	drives	fail),	all	you	need	for	recovery	is	one	of
your	teammates’	local	Git	repository.

Getting	Ready

Command	Line	or	GUI?

There	are	two	main	ways	of	working	with	Git:	either	via	its	“Command	Line
Interface”	or	with	a	GUI	application.	Neither	of	these	are	right	or	wrong.

On	the	one	hand,	using	a	GUI	application	will	make	you	more	efficient	and	let
you	access	more	advanced	features	that	would	be	too	complex	on	the	command
line.

On	the	other	hand,	however,	I	recommend	learning	the	basics	of	Git	on	the
command	line,	first.	It	helps	you	form	a	deeper	understanding	of	the	underlying
concepts	and	makes	you	independent	from	any	specific	GUI	application.

CROSS	REFERENCE

In	case	the	command	line	is	all	Greek	to	you,	I‘ve	prepared	a	Appendix	B:	Command	Line	101	in	the

appendix	for	you	that	will	show	you	the	most	important	basics.

As	soon	as	you‘re	beyond	the	raw	basics,	you	should	consider	using	a	GUI
application	to	make	your	day-to-day	work	easier	and	more	productive.	We
highly	recommend	that	you	have	a	look	at	Tower,	the	Git	client	that	is	trusted	by
over	80,000	users	in	companies	like	Apple,	Google,	Amazon,	IBM,	and	Twitter.

You‘ll	find	a	more	detailed	description	of	these	applications	later	in	this	book	in
the	Desktop	GUIs	chapter.

http://www.git-tower.com/?utm_source=learn-git-ebook&utm_medium=learn-git-ebook-pdf&utm_campaign=learn-git

Setting	Up	Git	on	Your	Computer
Installing	Git	has	become	incredibly	easy	in	recent	times.	There	are	one-click
installers	for	both	Mac	and	Windows.

Installing	Git	on	Windows

On	Windows,	you	can	download	the	"Git	for	Windows"	package	from	here:
https://git-for-windows.github.io/

When	running	the	installer	EXE,	you	should	choose	the	default	options	in	each
screen.	After	finishing	the	installation,	you	can	begin	working	with	Git	by
starting	the	“Git	Bash”	application.	You‘ll	find	it	in	the	Windows	START	menu,
inside	the	“Git”	folder:

Installing	Git	on	Mac	OS

On	Mac	OS	X,	a	one-click	installer	package	is	available	that	can	be	downloaded

https://git-for-windows.github.io/

from	here:	https://sourceforge.net/projects/git-osx-installer/

Once	this	is	installed,	you	can	jump	right	into	Git	by	starting	“Terminal.app”	on
your	Mac.	You‘ll	find	this	in	the	“Utilities”	subfolder	of	your	“Applications”
folder	in	Finder:

Configuring	Git

A	couple	of	very	basic	configurations	should	be	made	before	you	get	started.
You	should	set	your	name	and	email	address	as	well	as	enable	coloring	to	pretty
up	command	outputs:

$	git	config	--global	user.name	“John	Doe”

$	git	config	--global	user.email	“john@doe.org”

$	git	config	--global	color.ui	auto

https://sourceforge.net/projects/git-osx-installer/

NOTE

In	this	book,	like	in	many	others,	the	”$”	sign	represents	the	prompt	of	the	command	line	interface

(you	don‘t	have	to	type	this	character	in	your	commands!).	Therefore,	any	time	you	see	a	line	starting

with	the	”$”	sign,	it	means	we‘re	executing	commands	in	“Terminal”	or	“Git	Bash”.

Again,	if	this	is	all	greek	to	you,	you	might	want	to	look	at	Appendix	B:	Command	Line	101.

Additionally,	I	recommend	having	a	Cheat	Sheet	on	your	desk(top)	so	you	don‘t
have	to	remember	all	the	commands	by	heart.

https://www.git-tower.com/blog/git-cheat-sheet/

The	Basic	Workflow	of	Version	Control
Before	we	get	lost	in	Git	commands,	you	should	understand	what	a	basic
workflow	with	version	control	looks	like.	We‘ll	walk	through	each	step	in	detail
later	in	this	book.	But	first,	let‘s	get	an	understanding	of	what	the	workflow	in
general	is	like.	The	most	basic	building	block	of	version	control	is	a
“repository”.

GLOSSARY

Repository
Think	of	a	repository	as	a	kind	of	database	where	your	VCS	stores	all	the	versions	and	metadata	that

accumulate	in	the	course	of	your	project.	In	Git,	the	repository	is	just	a	simple	hidden	folder	named

“.git”	in	the	root	directory	of	your	project.	Knowing	that	this	folder	exists	is	more	than	enough.	You

don‘t	have	to	(and,	moreover,	should	not)	touch	anything	inside	this	magical	folder.

Getting	such	a	repository	on	your	local	machine	can	be	done	in	two	ways:

If	you	have	a	project	locally	on	your	computer	that	is	not	yet	under	version
control,	you	can	initialize	a	new	repository	for	this	project.

If	you‘re	getting	on	board	of	a	project	that‘s	already	running,	chances	are
there	is	a	repository	on	a	remote	server	(on	the	internet	or	on	your	local
network).	You‘ll	then	probably	be	provided	with	a	URL	to	this	repository
that	you	will	then	“clone”	(download	/	copy)	to	your	local	computer.

1.	 As	soon	as	you	have	a	local	repository,	you	can	start	working	on	your	files:
modify,	delete,	add,	copy,	rename,	or	move	files	in	whatever	application
(your	favorite	editor,	a	file	browser,	...)	you	prefer.	In	this	step,	you	don‘t
have	to	watch	out	for	anything.	Just	make	any	changes	necessary	to	move
your	project	forward.

2.	 It‘s	only	when	you	feel	you‘ve	reached	a	noteworthy	state	that	you	have	to
consider	version	control	again.	Then	it‘s	time	to	wrap	up	your	changes	in	a
commit.

GLOSSARY

Commit
A	commit	is	a	wrapper	for	a	specific	set	of	changes.	The	author	of	a	commit	has	to	comment

what	he	did	in	a	short	“commit	message”.	This	helps	other	people	(and	himself)	to	understand

later	what	his	intention	was	when	making	these	changes.

Every	set	of	changes	implicitly	creates	a	new,	different	version	of	your	project.	Therefore,

every	commit	also	marks	a	specific	version.	It‘s	a	snapshot	of	your	complete	project	at	that

certain	point	in	time	(but	saved	in	a	much	more	efficient	way	than	simply	duplicating	the

whole	project...).	The	commit	knows	exactly	how	all	of	your	files	and	directories	looked	and

can	therefore	be	used,	e.g.,	to	restore	the	project	to	that	certain	state.

3.	 However,	before	you	commit,	you‘ll	want	to	get	an	overview	of	what
you‘ve	changed	so	far.	In	Git,	you‘ll	use	the	“status”	command	to	get	a	list
of	all	the	changes	you	performed	since	the	last	commit:	which	files	did	you
change?	Did	you	create	any	new	ones	or	deleted	some	old	ones?

4.	 Next,	you	tell	Git	which	of	your	local	changes	you	want	to	wrap	up	in	the
next	commit.	Only	because	a	file	was	changed	doesn‘t	mean	it	will	be	part
of	the	next	commit!	Instead,	you	have	to	explicitly	decide	which	changes
you	want	to	include.	To	do	this,	you	add	them	to	the	so-called	“Staging
Area”.

5.	 Now,	having	added	some	changes	to	the	Staging	Area,	it‘s	time	to	actually
commit	these	changes.	You‘ll	have	to	add	a	short	and	meaningful	message
that	describes	what	you	actually	did.	The	commit	will	then	be	recorded	in
your	local	Git	repository,	marking	a	new	version	of	your	project.

6.	 From	time	to	time,	you‘ll	want	to	have	a	look	at	what	happened	in	the
project	-	especially	if	you‘re	working	together	with	other	people.	The	“log”
command	lists	all	the	commits	that	were	saved	in	chronological	order.	This
allows	you	to	see	which	changes	were	made	in	detail	and	helps	you
comprehend	how	the	project	evolved.

7.	 Also	when	collaborating	with	others,	you‘ll	both	want	to	share	(some	of)
your	changes	with	them	and	receive	the	changes	they	made.	A	remote
repository	on	a	server	is	used	to	make	this	exchange	possible.

GLOSSARY

Local	&	Remote	Repositories
There	are	two	kinds	of	repositories:

A	“local”	repository	resides	on	your	local	computer,	as	a	“.git”	folder	inside	your	project‘s	root

folder.	You	are	the	only	person	that	can	work	with	this	repository,	by	committing	changes	to	it.

A	“remote”	repository,	in	contrast,	is	typically	located	on	a	remote	server	on	the	internet	or	in

your	local	network.	No	actual	working	files	are	associated	with	a	remote	repository:	it	has	no

working	directory	but	it	exclusively	consists	of	the	“.git”	repository	folder.	Teams	are	using

remote	repositories	to	share	&	exchange	data:	they	serve	as	a	common	base	where	everybody

can	publish	their	own	changes	and	receive	changes	from	their	teammates.

Starting	with	an	Unversioned,	Local
Project
Let‘s	start	with	an	existing	project	that	is	not	yet	under	version	control.	Change
into	the	project‘s	root	folder	on	the	command	line	and	use	the	“git	init”
command	to	start	versioning	this	project:

$	cd	<path/to/project/folder>

$	git	init

Now	take	a	moment	to	look	at	the	files	in	that	directory	(including	any	hidden
files):

$	ls	-la

You‘ll	see	that	a	new,	hidden	folder	was	added,	named	“.git”.	All	that	happened
is	that	Git	created	an	empty	local	repository	for	us.	Please	mind	the	word
“empty”:	Git	did	not	add	the	current	content	of	your	working	copy	as	something
like	an	“initial	version”.	The	repository	contains	not	a	single	version	of	your
project,	yet.

GLOSSARY

Working	Copy
The	root	folder	of	your	project	is	often	called	the	“working	copy”	(or	“working	directory”).	It‘s	the

directory	on	your	local	computer	that	contains	your	project‘s	files.	You	can	always	ask	the	version

control	system	to	populate	your	working	copy	with	any	version	of	your	project.	But	you	always	only

have	one	working	copy	with	one	specific	version	on	your	disk	-	not	multiple	in	parallel.

Ignoring	Files

Typically,	in	every	project	and	on	every	platform,	there	are	a	couple	of	files	that
you	don‘t	want	to	be	version	controlled:	on	Mac	OS,	e.g.,	those	pesky
“.DS_Store”	files	aren‘t	worth	versioning.	In	other	projects,	you	might	have
build	or	cache	files	that	make	no	sense	in	a	version	control	system.	You‘ll	have
to	decide	yourself	which	files	you	don‘t	want	to	include.

CONCEPT

Which	Files	Should	I	Ignore?
As	a	simple	rule	of	thumb	you‘ll	most	likely	want	to	ignore	files	that	were	created	automatically	(as	a

“by-product”):	temporary	files,	logs,	cache	files...

Other	examples	for	excluded	files	range	from	compiled	sources	to	files	that	contain	passwords	or

personal	configurations.

A	helpful	compilation	of	ignore	rules	for	different	projects	and	platforms	can	be	found	here:

https://github.com/github/gitignore

The	list	of	files	to	ignore	is	kept	in	a	simple	file	called	”.gitignore”	in	the	root
folder	of	your	project.	It‘s	highly	recommended	to	define	this	list	at	the	very
beginning	of	your	project	-	before	making	your	first	commit.	Because	once	files
are	committed,	you‘ll	have	to	jump	through	some	hoops	to	get	them	out	of
version	control,	again.

Now,	let‘s	get	going:	Create	an	empty	file	in	your	favorite	editor	and	save	it	as
”.gitignore”	in	your	project‘s	root	folder.	If	you‘re	on	a	Mac,	e.g.,	you‘ll	want	to
make	sure	it	contains	at	least	the	following	line:

.DS_Store

https://github.com/github/gitignore

If	there	are	other	files	you	want	to	ignore,	simply	add	a	line	for	each	one.
Defining	these	rules	can	get	quite	complex.	Therefore,	to	keep	things	simple,	I‘ll
list	the	most	useful	patterns	which	you	can	easily	adapt	to	your	own	needs:

Ignore	one	specific	file:	Provide	the	full	path	to	the	file,	seen	from	the	root
folder	of	your	project.
path/to/file.ext

Ignore	all	files	with	a	certain	name	(anywhere	in	the	project):	Just	write
down	the	file‘s	name,	without	giving	a	path.
filename.ext

Ignore	all	files	of	a	certain	type	(anywhere	in	the	project):
*.ext

Ignore	all	files	in	a	certain	folder:
path/to/folder/*

Making	Your	First	Commit

With	some	ignore	rules	in	place,	it‘s	time	to	make	our	initial	commit	for	this
project.	We‘ll	go	into	great	detail	about	the	whole	process	of	committing	a	little
later	in	this	book.	For	now,	simply	execute	the	following	commands:

$	git	add	-A

$	git	commit	-m	“Initial	commit”

Starting	with	an	Existing	Project	on	a
Server
When	you‘re	getting	on	board	of	a	project	that‘s	already	running,	you	were
probably	given	a	URL	to	the	project‘s	remote	repository	on	a	server.	Such	a	URL
can	take	many	forms:

ssh://user@server/git-repo.git

user@server:git-repo.git

http://example.com/git-repo.git

https://example.com/git-repo.git

git://example.com/git-repo.git

No	matter	what	format	the	URL	is,	you	can	just	pour	it	into	the	“git	clone”
command.	However,	you	should	first	make	sure	that	you	are	in	the	folder	where
you	want	this	project	to	be	downloaded	to:

$	cd	your/development/folder/

$	git	clone	https://github.com/gittower/git-crash-course.git

NOTE

In	case	you	don‘t	have	any	remote	repository	of	your	own	to	experiment	with,	feel	free	to	clone	from

the	above	URL.	I‘ll	use	this	repository	in	my	examples	for	the	rest	of	this	book.

Git	will	now	download	a	complete	copy	of	this	repository	to	your	local	disk	-	on
condition	that	you‘re	allowed	to	access	this	repository.

For	the	“http”	and	“git”	protocols,	no	access	rights	are	necessary.

For	“https”	URLs,	the	command	line	might	ask	you	for	a	username	and	a
password.

For	“ssh”	URLs	(either	with	a	leading	“ssh://”	or,	with	the	shorter	form,
“user@server...”),	you‘ll	have	to	use	“SSH	Public	Key”	authentication.	While
being	very	safe,	efficient,	and	widely	used,	it‘s	also	a	little	bit	of	work	to	set	up.
For	detailed	information	about	this	topic	I	recommend	taking	a	look	at	chapter
Authentication	with	SSH	Public	Keys	later	in	this	book.

Working	on	Your	Project
No	matter	if	you	created	a	brand	new	repository	or	if	you	cloned	an	existing	one
-	you	now	have	a	local	Git	repository	on	your	computer.	This	means	you‘re
ready	to	start	working	on	your	project:	use	whatever	application	you	want	to
change,	create,	delete,	move,	copy,	or	rename	your	files.

CONCEPT

The	Status	of	a	File
In	general,	files	can	have	one	of	two	statuses	in	Git:

untracked:	a	file	that	is	not	under	version	control,	yet,	is	called	“untracked”.	This	means	that

the	version	control	system	doesn‘t	watch	for	(or	“track”)	changes	to	this	file.	In	most	cases,

these	are	either	files	that	are	newly	created	or	files	that	are	ignored	and	which	you	don‘t	want	to

include	in	version	control	at	all.

tracked:	all	files	that	are	already	under	version	control	are	called	“tracked”.	Git	watches	these

files	for	changes	and	allows	you	to	commit	or	discard	them.

The	Staging	Area

At	some	point	after	working	on	your	files	for	a	while,	you‘ll	want	to	save	a	new
version	of	your	project.	Or	in	other	words:	you‘ll	want	to	commit	some	of	the
changes	you	made	to	your	tracked	files.

THE	GOLDEN	RULES	OF	VERSION	CONTROL

#1:	Commit	Only	Related	Changes
When	crafting	a	commit,	it‘s	very	important	to	only	include	changes	that	belong	together.	You	should

never	mix	up	changes	from	multiple,	different	topics	in	a	single	commit.	For	example,	imagine

wrapping	both	some	work	for	your	new	login	functionality	and	a	fix	for	bug	#122	in	the	same

commit:

Understanding	what	all	those	changes	really	mean	and	do	gets	hard	for	your	teammates	(and,

after	some	time,	also	for	yourself).	Someone	who‘s	trying	to	understand	the	progress	of	that	new

login	functionality	will	have	to	untangle	it	from	the	bugfix	code	first.

Undoing	one	of	the	topics	gets	impossible.	Maybe	your	login	functionality	introduced	a	new

bug.	You	can‘t	undo	just	this	one	without	undoing	your	work	for	fix	#122,	also!

Instead,	a	commit	should	only	wrap	related	changes:	fixing	two	different	bugs	should	produce	(at	the

very	least)	two	separate	commits;	or,	when	developing	a	larger	feature,	every	small	aspect	of	it	might

be	worth	its	own	commit.

Small	commits	that	only	contain	one	topic	make	it	easier	for	other	members	of	your	team	to

understand	the	changes	-	and	to	possibly	undo	them	if	something	went	wrong.

However,	when	you‘re	working	full-steam	on	your	project,	you	can‘t	always
guarantee	that	you	only	make	changes	for	one	and	only	one	topic.	Often,	you
work	on	multiple	aspects	in	parallel.

This	is	where	the	“Staging	Area”,	one	of	Git‘s	greatest	features,	comes	in	very
handy:	it	allows	you	to	determine	which	of	your	local	changes	shall	be
committed.	Because	in	Git,	simply	making	some	changes	doesn‘t	mean	they‘re
automatically	committed.	Instead,	every	commit	is	“hand-crafted”:	each	change
that	you	want	to	include	in	the	next	commit	has	to	be	marked	explicitly	(“added
to	the	Staging	Area”	or,	simply	put,	“staged”).

Getting	an	Overview	of	Your	Changes

Let‘s	have	a	look	at	what	we‘ve	done	so	far.	To	get	an	overview	of	what	you‘ve
changed	since	your	last	commit,	you	simply	use	the	“git	status”	command:

$	git	status

#	On	branch	master

#	Changes	not	staged	for	commit:

#			(use	“git	add/rm	<file>...	”	to	update	what	will	be	committed)

#			(use	“git	checkout	--	<file>...”	to	discard	changes	in	working

#				directory)

#

#							modified:			css/about.css

#							modified:			css/general.css

#							deleted:			error.html

#							modified:			imprint.html

#							modified:			index.html

#

#	Untracked	files:

#				(use	“git	add	<file>...”	to	include	in	what	will	be	committed)

#							new-page.html

no	changes	added	to	commit	(use	“git	add”	and/or	“git	commit	-a”)

Thankfully,	Git	provides	a	rather	verbose	summary	and	groups	your	changes	in	3
main	categories:

“Changes	not	staged	for	commit”

“Changes	to	be	committed”

“Untracked	files”

Getting	Ready	to	Commit

Now	it‘s	time	to	craft	a	commit	by	staging	some	changes	with	the	“git	add”
command:

$	git	add	new-page.html	index.html	css/*

With	this	command,	we	added	the	new	“new-page.html”	file,	the	modifications
in	“index.html”,	and	all	the	changes	in	the	“css”	folder	to	the	Staging	Area.
Since	we	also	want	to	record	the	removal	of	“error.html”	in	the	next	commit,	we
have	to	use	the	“git	rm”	command	to	confirm	this:

$	git	rm	error.html

Let‘s	use	“git	status”	once	more	to	make	sure	we‘ve	prepared	the	right	stuff:

$	git	status

#	On	branch	master

#	Changes	to	be	committed:

#			(use	“git	reset	HEAD	<file>...”	to	unstage)

#

#							modified:			css/about.css

#							modified:			css/general.css

#							deleted:			error.html

#							modified:			index.html

#							new	file:			new-page.html

#

#	Changes	not	staged	for	commit:

#			(use	“git	add	<file>...”	to	update	what	will	be	committed)

#			(use	“git	checkout	--	<file>...”	to	discard	changes	in	working	

#				directory)

#

#							modified:			imprint.html

#

Assuming	that	the	changes	in	“imprint.html”	concerned	a	different	topic	than	the
rest,	we‘ve	deliberately	left	them	unstaged.	That	way,	they	won‘t	be	included	in
our	next	commit	and	simply	remain	as	local	changes.	We	can	then	continue	to
work	on	them	and	maybe	commit	them	later.

Committing	Your	Work

Having	carefully	prepared	the	Staging	Area,	there‘s	only	one	thing	left	before
we	can	actually	commit:	we	need	a	good	commit	message.

THE	GOLDEN	RULES	OF	VERSION	CONTROL

#2:	Write	Good	Commit	Messages
Time	spent	on	crafting	a	good	commit	message	is	time	spent	well:	it	will	make	it	easier	to	understand

what	happened	for	your	teammates	(and	after	some	time	also	for	yourself).

Begin	your	message	with	a	short	summary	of	your	changes	(up	to	50	characters	as	a	guideline).

Separate	it	from	the	following	body	by	including	a	blank	line.	The	body	of	your	message	should

provide	detailed	answers	to	the	following	questions:	What	was	the	motivation	for	the	change?	How

does	it	differ	from	the	previous	version?

The	“git	commit”	command	wraps	up	your	changes:

$	git	commit	-m	“Implement	the	new	login	box”

If	you	have	a	longer	commit	message,	possibly	with	multiple	paragraphs,	you
can	leave	out	the	”-m”	parameter	and	Git	will	open	an	editor	application	for	you
(which	you	can	also	configure	via	the	“core.editor”	property).

CONCEPT

What	Makes	a	Good	Commit?
The	better	and	more	carefully	you	craft	your	commits,	the	more	useful	will	version	control	be	for

you.	Here	are	some	guidelines	about	what	makes	a	good	commit:

Related	Changes:	As	stated	before,	a	commit	should	only	contain	changes	from	a	single	topic.

Don‘t	mix	up	contents	from	different	topics	in	the	same	commit.	This	will	make	it	harder	to

understand	what	happened.

Completed	Work:	Never	commit	something	that	is	half-done.	If	you	need	to	save	your	current

work	temporarily	in	something	like	a	clipboard,	you	can	use	Git‘s	“Stash”	feature	(which	will

be	discussed	later	in	the	book).	But	don‘t	eternalize	it	in	a	commit.

Tested	Work:	Related	to	the	point	above,	you	shouldn‘t	commit	code	that	you	think	is	working.

Test	it	well	-	and	before	you	commit	it	to	the	repository.

Short	&	Descriptive	Messages:	A	good	commit	also	needs	a	good	message.	See	the	paragraph

above	on	how	to	“Write	Good	Commit	Messages”	for	more	about	this.

Finally,	you	should	make	it	a	habit	to	commit	often.	This	will	automatically	help	you	to	keep	your

commits	small	and	only	include	related	changes.

Inspecting	the	Commit	History

Git	saves	every	commit	that	is	ever	made	in	the	course	of	your	project.
Especially	when	collaborating	with	others,	it‘s	important	to	see	recent	commits
to	understand	what	happened.

NOTE

Later	in	this	book,	in	the	Remote	Repositories	chapter,	we‘ll	talk	about	how	to	exchange	data	with

your	coworkers.

The	“git	log”	command	is	used	to	display	the	project‘s	commit	history:

$	git	log

It	lists	the	commits	in	chronological	order,	beginning	with	the	newest	item.	If
there	are	more	items	than	it	can	display	on	one	page,	the	command	line	indicates
this	by	showing	a	colon	(”:”)	at	the	end	of	the	page.	You	can	then	go	to	the	next
page	with	the	SPACE	key	and	quit	with	the	“q”	key.

commit	2dfe283e6c81ca48d6edc1574b1f2d4d84ae7fa1

Author:	Tobias	Günther	<support@learn-git.com>

Date:	Fri	Jul	26	10:52:04	2013	+0200

				Implement	the	new	login	box

									

commit	2b504bee4083a20e0ef1e037eea0bd913a4d56b6

Author:	Tobias	Günther	<support@learn-git.com>

Date:	Fri	Jul	26	10:05:48	2013	+0200

				Change	headlines	for	about	and	imprint

									

commit	0023cdddf42d916bd7e3d0a279c1f36bfc8a051b

Author:	Tobias	Günther	<support@learn-git.com>

Date:	Fri	Jul	26	10:04:16	2013	+0200

				Add	simple	robots.txt

Every	commit	item	consists	(amongst	other	things)	of	the	following	metadata:

Commit	Hash

Author	Name	&	Email

Date

Commit	Message

GLOSSARY

The	Commit	Hash
Every	commit	has	a	unique	identifier:	a	40-character	checksum	called	the	“commit	hash”.	While	in

centralized	version	control	systems	like	Subversion	or	CVS,	an	ascending	revision	number	is	used

for	this,	this	is	simply	not	possible	anymore	in	a	distributed	VCS	like	Git:	The	reason	herefore	is	that,

in	Git,	multiple	people	can	work	in	parallel,	committing	their	work	offline,	without	being	connected

to	a	shared	repository.	In	this	scenario,	you	can‘t	say	anymore	whose	commit	is	#5	and	whose	is	#6.

Since	in	most	projects,	the	first	7	characters	of	the	hash	are	enough	for	it	to	be	unique,	referring	to	a

commit	using	a	shortened	version	is	very	common.

Apart	from	this	metadata,	Git	also	allows	you	to	display	the	detailed	changes

that	happened	in	each	commit.	Use	the	”-p”	flag	with	the	“git	log”	command	to
add	this	kind	of	information:

$	git	log	-p

commit	2dfe283e6c81ca48d6edc1574b1f2d4d84ae7fa1

Author:	Tobias	Günther	<support@learn-git.com>

Date:	Fri	Jul	26	10:52:04	2013	+0200

				Implement	the	new	login	box

diff	--git	a/css/about.css	b/css/about.css

index	e69de29..4b5800f	100644

---	a/css/about.css

+++	b/css/about.css

@@	-0,0	+1,2	@@

+h1	{

+		line-height:30px;	}

\	No	newline	at	end	of	file

di.ff	--git	a/css/general.css	b/css/general.css

index	a3b8935..d472b7f	100644

---	a/css/general.css

+++	b/css/general.css

@@	-21,7	+21,8	@@	body	{

	h1,	h2,	h3,	h4,	h5	{

			color:#ffd84c;

-		font-family:	“Trebuchet	MS”,	“Trebuchet”;	}

+		font-family:	“Trebuchet	MS”,	“Trebuchet”;

+		margin-bottom:0px;	}

	p	{

			margin-bottom:6px;}

diff	--git	a/error.html	b/error.html

deleted	file	mode	100644

index	78alc33..0000000

---	a/error.html

+++	/dev/null

@@	-1,43	+0,0	@@

-	<html>

-	

-			<head>

-					<title>Tower	::	Imprint</title>

-					<link	rel=“shortcut	icon”	href=“img/favicon.ico”	/>

-					<link	type=“text/css”	href=“css/general.css”	/>

-			</head>

-

Later	in	this	book,	we‘ll	learn	how	to	interpret	this	kind	of	output	in	the	chapter
Inspecting	Changes	in	Detail	with	Diffs.

Time	to	Celebrate

Congratulations!	You‘ve	just	taken	the	first	step	in	mastering	version	control
with	Git!	Pat	yourself	on	the	back	and	grab	a	beer	before	moving	on.

Branching	can	Change	Your	Life
This	is	quite	a	sensational	headline,	I	know...	But	the	truth	is:	it‘s	not	an
exaggeration.	Using	branches	in	your	day-to-day	work	might	very	well	prove	to
make	you	a	better	programmer	or	designer.

First	of	all,	if	you‘re	coming	from	another	version	control	system,	I	kindly	ask
you	to	forget	the	things	you	already	know	about	branching	&	merging.	It‘s	true
that	Git	hasn‘t	invented	this	particular	wheel:	many	other	VCS	also	offer
branching.	However,	Git‘s	concepts	in	this	area	are	absolutely	unique	when	it
comes	to	ease	of	use	and	performance.

Now,	let‘s	look	at	why	branches	are	so	important.

Working	in	Contexts
In	every	project,	there	are	always	multiple	different	contexts	where	work
happens.	Each	feature,	bugfix,	experiment,	or	alternative	of	your	product	is
actually	a	context	of	its	own:	it	can	be	seen	as	its	own	“topic”,	clearly	separated
from	other	topics.

This	leaves	you	with	an	unlimited	amount	of	different	contexts.	Most	likely,
you‘ll	have	at	least	one	context	for	your	“main”	or	“production”	state,	and
another	context	for	each	feature,	bugfix,	experiment,	etc.

In	real-world	projects,	work	always	happens	in	multiple	of	these	contexts	in
parallel:

While	you‘re	preparing	two	new	variations	of	your	website‘s	design
(context	1	&	2)...

you‘re	also	trying	to	fix	an	annoying	bug	(context	3).

On	the	side,	you	also	update	some	content	on	your	FAQ	pages	(context	4),
while...

one	of	your	teammates	is	working	on	a	new	feature	for	your	shopping	cart
(context	5),...

and	another	colleague	is	experimenting	with	a	whole	new	login
functionality	(context	6).

A	World	Without	Branches

Not	working	in	clearly	separated	contexts	can	(and	sooner	or	later	will)	cause
several	problems:

What	happens	if	your	client	likes	variation	2	of	the	new	design?	In	the

meantime,	a	host	of	other	changes	have	happened!	How	do	you	launch	the
new	design	while	integrating	all	these	other	changes	instead	of	losing	them?

What	happens	if	the	shopping	cart	feature	became	obsolete	because	the
client	changed	his	mind?	How	do	you	get	all	that	unwanted	code	(and	only
that	code!)	out?

What	do	you	do	if	that	new	login	functionality	proves	to	be	impossible	to
implement?	It‘s	already	mingled	with	all	of	those	other	changes,	being
almost	impossible	to	separate	out!

How	can	you	avoid	losing	track?	Most	likely,	you	shouldn‘t	be	bothered
with	all	the	topics	from	all	of	your	colleagues.

Things	will	start	to	get	very	confusing	when	you	try	to	handle	multiple	topics	in
a	single	context:

A	tempting	workaround	might	be	to	simply	copy	your	complete	project	folder
for	each	new	context.	But	this	only	leaves	you	with	other	problems:

You	circumvent	your	VCS,	since	those	new	folders	won‘t	be	under	version
control.

Not	being	version	controlled,	you	can‘t	easily	share	&	collaborate	with
others.

Integrating	changes	from	one	context	into	another	(maybe	your	main
context)	is	difficult	and	error-prone.

To	make	a	long	story	short:	if	your	goal	is	to	work	professionally,	you‘ll	have	to
find	a	way	to	deal	with	multiple	contexts	in	a	professional	manner.

Branches	to	the	Rescue

You	might	have	already	guessed	it:	branches	are	what	we	need	to	solve	these
problems.	Because	a	branch	represents	exactly	such	a	context	in	a	project	and
helps	you	keep	it	separate	from	all	other	contexts.

All	the	changes	you	make	at	any	time	will	only	apply	to	the	currently	active
branch;	all	other	branches	are	left	untouched.	This	gives	you	the	freedom	to	both
work	on	different	things	in	parallel	and,	above	all,	to	experiment	-	because	you
can‘t	mess	up!	In	case	things	go	wrong	you	can	always	go	back	/	undo	/	start
fresh	/	switch	contexts...

Luckily,	branches	in	Git	are	cheap	&	easy.	There‘s	no	reason	not	to	create	a	new
branch	when	you	start	working	on	a	new	topic,	no	matter	how	big	or	small	it
might	be.

THE	GOLDEN	RULES	OF	VERSION	CONTROL

#3:	Use	Branches	Extensively

Branching	is	one	of	Git’s	most	powerful	features	–	and	this	is	not	by	accident:	quick	and	easy

branching	was	a	central	requirement	from	day	one.	Branches	are	the	perfect	tool	to	help	you	avoid

mixing	up	different	lines	of	development.	You	should	use	branches	extensively	in	your	development

workflows:	for	new	features,	bug	fixes,	experiments,	ideas...

Working	with	Branches
Until	now,	we	haven‘t	taken	much	notice	of	branches	in	our	example	project.
However,	without	knowing,	we	were	already	working	on	a	branch!	This	is
because	branches	aren‘t	optional	in	Git:	you	are	always	working	on	a	certain
branch	(the	currently	active,	or	“checked	out”,	or	“HEAD”	branch).

So,	which	branch	is	HEAD	at	the	moment?	The	“git	status”	command	tells	us	in
its	first	line	of	output:	“On	branch	master”.

The	“master”	branch	was	created	by	Git	automatically	for	us	when	we	started
the	project.	Although	you	could	rename	or	delete	it,	you‘ll	have	a	hard	time
finding	a	project	without	it	because	most	people	just	keep	it.	But	please	keep	in
mind	that	“master”	is	by	no	means	a	special	or	magical	branch.	It‘s	like	any
other	branch!

Now,	let‘s	start	working	on	a	new	feature.	Based	on	the	project‘s	current	state,
we	create	a	new	branch	and	name	it	“contact-form”:

$	git	branch	contact-form

Using	the	“git	branch”	command	lists	all	of	our	branches	(and	the	“-v”	flag
provides	us	with	a	little	more	data	than	usual):

$	git	branch	-v

		contact-form	3de33cc	Implement	the	new	login	box

*	master							3de33cc	[ahead	1]	Implement	the	new	login	box

You	can	see	that	our	new	branch	“contact-form”	was	created	and	is	based	on	the
same	version	as	“master”.	Additionally,	the	little	asterisk	character	(*)	next	to
“master”	indicates	that	this	is	our	current	HEAD	branch.	To	emphasize	this:	the
“git	branch”	command	only	created	that	new	branch	-	but	it	didn‘t	make	it

active.	Before	checking	out	that	new	branch,	it‘s	a	good	idea	to	have	another
look	at	“git	status”	to	see	where	we	currently	are:

$	git	status

#	On	branch	master

#	Changes	not	staged	for	commit:

#			(use	“git	add	<file>...”	to	update	what	will	be	committed)

#			(use	“git	checkout	--	<file>...”	to	discard	changes	in	working	

#				directory)

#

#							modified:			imprint.html

#

no	changes	added	to	commit	(use	“git	add”	and/or	“git	commit	-a”)

Oh,	right:	we	still	have	some	changes	in	“imprint.html”	in	our	working	copy!
Actually,	we	just	wanted	to	start	working	on	our	new	“contact-form”	branch;	but
these	changes	don‘t	belong	to	this	feature.	So	what	do	we	do	with	them?	One
way	to	get	this	work-in-progress	out	of	the	way	would	be	to	simply	commit	it.
But	committing	half-done	work	is	a	bad	habit.

THE	GOLDEN	RULES	OF	VERSION	CONTROL

#4:	Never	Commit	Half-Done	Work
You	should	only	commit	code	when	it’s	completed.	This	doesn’t	mean	you	have	to	complete	a	whole,

large	feature	before	committing.	Quite	the	contrary:	split	the	feature’s	implementation	into	logical

chunks	and	remember	to	commit	early	and	often.	But	don’t	commit	just	to	get	half-done	work	out	of

your	way	when	you	need	a	“clean	working	copy”.	For	these	cases,	consider	using	Git’s	“Stash”

feature	instead.

Saving	Changes	Temporarily
A	commit	wraps	up	changes	and	saves	them	permanently	in	the	repository.
However,	in	your	day-to-day	work,	there	are	a	lot	of	situations	where	you	only
want	to	save	your	local	changes	temporarily.	For	example,	imagine	you‘re	in
the	middle	of	some	changes	for	feature	X	when	an	important	bug	report	comes
in.	Your	local	changes	don‘t	belong	to	the	bugfix	you‘re	going	to	make.	You
have	to	get	rid	of	them	(temporarily,	without	losing	them!)	and	continue	working
on	them	later.

Situations	like	this	one	happen	all	the	time:	you	have	some	local	changes	in	your
working	copy	that	you	can‘t	commit	right	now	-	and	you	want	or	need	to	start
working	on	something	else.	To	get	these	changes	out	of	your	way	and	have	a
“clean”	working	copy,	Git‘s	“Stash”	feature	comes	in	handy.

CONCEPT

The	Stash
Think	of	the	Stash	as	a	clipboard	on	steroids:	it	takes	all	the	changes	in	your	working	copy	and	saves

them	for	you	on	a	new	clipboard.	You‘re	left	with	a	clean	working	copy,	i.e.	you	have	no	more	local

changes.

Later,	at	any	time,	you	can	restore	the	changes	from	that	clipboard	in	your	working	copy	-	and

continue	working	where	you	left	off.

You	can	create	as	many	Stashes	as	you	want	-	you‘re	not	limited	to	storing	only	one	set	of	changes.

Also,	a	Stash	is	not	bound	to	the	branch	where	you	created	it:	when	you	restore	it,	the	changes	will

be	applied	to	your	current	HEAD	branch,	whichever	this	may	be.

Let‘s	stash	away	these	local	changes	so	we	have	a	clean	working	copy	before
starting	to	work	on	our	new	feature:

$	git	stash

Saved	working	directory	and	index	state	WIP	on	master:	

			2dfe283	Implement	the	new	login	box

HEAD	is	now	at	2dfe283	Implement	the	new	login	box

$	git	status

#	On	branch	master

nothing	to	commit	(working	directory	clean)

The	local	changes	in	“imprint.html”	are	now	safely	stored	on	a	clipboard,	ready
to	be	restored	any	time	we	want	to	continue	working	on	them.

You	can	easily	get	an	overview	of	your	current	Stashes:

$	git	stash	list

stash@{0}:	WIP	on	master:	2d6e283	Implement	the	new	login	box

The	newest	Stash	will	always	be	at	the	top	of	the	list,	named	“stash@{0}”.	Older
Stashes	have	higher	numbers.

When	you‘re	ready	to	restore	a	saved	Stash,	you	have	two	options:

Calling	“git	stash	pop”	will	apply	the	newest	Stash	and	clear	it	from	your
Stash	clipboard.

Calling	“git	stash	apply	<stashname>”	will	also	apply	the	specified	Stash,
but	it	will	remain	saved.	You	can	delete	it	later	via	“git	stash	drop
<stashname>”.

You	can	choose	to	not	specify	the	Stash	when	using	any	of	these	commands.
Then,	Git	will	simply	take	the	newest	Stash	(always	“stash@{0}”).

CONCEPT

When	to	Stash
Stashing	helps	you	get	a	clean	working	copy.	While	this	can	be	helpful	in	many	situations,	it‘s

strongly	recommended...

...before	checking	out	a	different	branch.

...before	pulling	remote	changes.

...before	merging	or	rebasing	a	branch.

Finally,	it‘s	time	to	get	our	hands	dirty	with	our	new	feature!

Checking	Out	a	Local	Branch
Now	that	we	have	a	clean	working	copy,	the	first	thing	we	have	to	do	is	switch
to	(or	“check	out”)	our	newly	created	branch:

$	git	checkout	contact-form

CONCEPT

Checkout,	HEAD,	and	Your	Working	Copy
A	branch	automatically	points	to	the	latest	commit	in	that	context.	And	since	a	commit	references	a

certain	version	of	your	project,	Git	always	knows	exactly	which	files	belong	to	that	branch.

At	each	point	in	time,	only	one	branch	can	be	HEAD	/	checked	out	/	active.	The	files	in	your

working	copy	are	those	that	are	associated	with	this	exact	branch.	All	other	branches	(and	their

associated	files)	are	safely	stored	in	Git‘s	database.	To	make	another	branch	(say,	“contact-form”)

active,	the	“git	checkout”	command	is	used.	This	does	two	things	for	you:

It	makes	“contact-form”	the	current	HEAD	branch.

It	replaces	the	files	in	your	working	directory	to	match	exactly	the	revision	that	“contact-form”

is	at.

Running	“git	status”	once	more,	you‘ll	see	that	we‘re	now	“On	branch	contact-
form”.	From	now	on,	all	of	our	changes	and	commits	will	only	impact	this	very
context	-	until	we	switch	it	again	by	using	the	“checkout”	command	to	make	a

different	branch	active.

Let‘s	prove	this	by	creating	a	new	file	called	“contact.html”	and	committing	it:

$	git	add	contact.html

$	git	commit	-m	“Add	new	contact	form	page”

$	git	log

commit	56eddd14cf034f4bcb8dc9cbf847b33309fa5180

Author:	Tobias	Günther	<support@learn-git.com>

Date:	Fri	Jul	26	10:56:16	2013	+0200

				Add	new	contact	form	page

commit	2dfe283e6c81ca48d6edc1574b1f2d4d84ae7f1

Author:	Tobias	Günther	<support@learn-git.com>

Date:	Fri	Jul	26	10:52:04	2013	+0200

				Implement	the	new	login	box

								

commit	2b504bee4083a20e0ef1e037eea0bd913a4d56b6

Author:	Tobias	Günther	<support@learn-git.com>

Date:	Fri	Jul	26	10:05:48	2013	+0200

				Change	headlines	for	about	and	imprint

Looking	at	the	Log,	you‘ll	see	that	your	new	commit	was	properly	saved.	No	big
surprises,	so	far.	But	now	let‘s	switch	back	to	“master”	and	have	a	look	at	the
Log	once	more:

$	git	checkout	master

$	git	log

commit	2dfe283e6c81ca48d6edc1574b1f2d4d84ae7f1

Author:	Tobias	Günther	<support@learn-git.com>

Date:	Fri	Jul	26	10:52:04	2013	+0200

				Implement	the	new	login	box

commit	2b504bee4083a20e0ef1e037eea0bd913a4d56b6

Author:	Tobias	Günther	<support@learn-git.com>

Date:	Fri	Jul	26	10:05:48	2013	+0200

				Change	headlines	for	about	and	imprint

You‘ll	find	that	the	“Add	new	contact	form	page”	commit	isn‘t	there	-	because
we	made	it	in	the	context	of	our	HEAD	branch	(which	was	the	“contact-form”
branch,	not	the	“master”	branch).	This	is	exactly	what	we	wanted:	our	changes
are	kept	in	their	own	context,	separated	from	other	contexts.

Merging	Changes
Keeping	your	commits	in	the	separate	context	of	a	branch	is	a	huge	help.	But
there	will	come	a	time	when	you	want	to	integrate	changes	from	one	branch	into
another.	For	example	when	you	finished	developing	a	feature	and	want	to
integrate	it	into	your	“production”	branch.	Or	maybe	the	other	way	around:
you’re	not	yet	finished	working	on	your	feature,	but	so	many	things	have
happened	in	the	rest	of	the	project	in	the	meantime	that	you	want	to	integrate
these	back	into	your	feature	branch.

Whatever	the	scenario	may	be:	such	an	integration	is	called	“merging”	and	is
done	with	the	“git	merge”	command.

CONCEPT

Integrating	Branches	-	Not	Individual	Commits
When	starting	a	merge,	you	don‘t	have	to	(and	cannot)	pick	individual	commits	that	shall	be

integrated.	Instead,	you	tell	Git	which	branch	you	want	to	integrate	-	and	Git	will	figure	out	which

commits	you	don‘t	have	in	your	current	working	branch.	Only	these	commits	will	then	be	integrated

as	a	result.

Also,	you	never	have	to	think	long	and	hard	about	where	these	changes	end	up:	The	target	of	such	an

integration	is	always	your	current	HEAD	branch	and,	thereby,	your	working	copy.

In	Git,	performing	a	merge	is	easy	as	pie.	It	requires	just	two	steps:

1.	 Check	out	the	branch	that	ha	receive	the	changes.

2.	 Call	the	“git	merge”	command	with	the	name	of	the	branch	that	contains	the
desired	changes.

Let‘s	integrate	the	changes	from	our	“contact-form”	branch	into	“master”:

$	git	checkout	master

$	git	merge	contact-form

When	you	now	perform	a	“git	log”	command,	you‘ll	see	that	our	“Add	new
contact	form	page”	commit	was	successfully	integrated	into	master!

$	git	log

commit	56eddd14cf034f4bcb8dc9cbf847b33309fa5180

Author:	Tobias	Günther	<support@learn-git.com>

Date:	Fri	Jul	26	10:56:16	2013	+0200

				Add	new	contact	form	page

commit	2dfe283e6c81ca48d6edc1574b1f2d4d84ae7f1

Author:	Tobias	Günther	<support@learn-git.com>

Date:	Fri	Jul	26	10:52:04	2013	+0200

				Implement	the	new	login	box

								

commit	2b504bee4083a20e0ef1e037eea0bd913a4d56b6

Author:	Tobias	Günther	<support@learn-git.com>

Date:	Fri	Jul	26	10:05:48	2013	+0200

				Change	headlines	for	about	and	imprin

However,	the	result	of	a	merge	action	can‘t	always	be	displayed	that	clearly:	not
always	can	Git	simply	add	the	missing	commits	on	top	of	the	HEAD	branch.
Often,	it	will	have	to	combine	changes	in	a	new,	separate	commit	called	a
“merge	commit”.	Think	of	it	like	a	knot	that	connects	two	branches.

You	can	merge	one	branch	into	another	as	often	as	you	like.	Git	will	again	figure
out	which	changes	haven‘t	been	merged	and	only	consider	these.

CROSS	REFERENCE

In	some	situations,	merging	will	result	in	one	or	more	“merge	conflicts”.	In	such	a	case,	Git	wasn‘t

able	to	combine	changes,	e.g.	because	the	exact	same	line	was	modified	in	two	different	ways.	You‘ll

then	have	to	decide	yourself	which	content	you	want.	We‘ll	talk	about	Dealing	with	Merge	Conflicts

in	detail	later	in	this	book.

Branching	Workflows
Depending	on	how	they‘re	used,	you	can	divide	branches	into	two	major	groups.

NOTE

Please	keep	in	mind,	though,	that	this	is	just	a	semantic	division.	Technically	(and	practically),	a

branch	is	just	a	branch	and	always	works	in	the	same	way.

(A)	Short-Lived	/	Topic	Branches

Earlier	in	this	book,	you‘ve	already	read	my	advice	to	be	generous	about
creating	branches	for	new	features,	bug	fixes,	and	experiments.	Branches	for
these	kinds	of	things	share	two	important	characteristics:

They	are	about	a	single	topic	and	are	used	to	isolate	code	belonging	to	this
topic	from	any	other	code.	You	shouldn‘t	create	a	“shopping-cart”	branch	to
then	also	commit	code	dealing	with	newsletter	signup	or	bug	#341	to	it.

They	typically	have	a	rather	short	lifespan,	usually	only	until	you‘ve
finished	working	on	the	topic	(i.e.	when	the	bug	is	fixed,	the	feature	is
complete...).	Then,	the	branch	will	be	integrated	into	the	broader	context	of
your	project	and	can	be	deleted.

(B)	Long-Running	Branches

Other	branches	are	used	on	a	higher	level,	independent	of	a	single	feature	or
bugfix	development.	They	represent	states	in	your	project	lifecycle	-	like	a
“production”,	“testing”,	or	“development”	state	-	and	remain	in	your	project	for
a	longer	time	(or	even	all	the	time).	Typically,	a	couple	of	rules	apply	to	this	kind
of	branches:

You	shouldn‘t	work	on	them	directly.	Instead,	you	integrate	other
branches	(possibly	feature	branches	or	other	long-running	branches)	into
them,	but	rarely	add	commits	directly	to	them.

Often,	long-running	branches	have	a	hierarchy	between	them:	e.g.
“master”	is	used	as	the	highest-order	branch.	It	should	only	contain
production	code.	Subordinate	to	it	exists	a	“development”	branch.	It‘s	used
to	test	developed	features	and	is	then	integrated	into	“master”...

Which	long-running	branches	should	be	created	and	how	they	should	be	used
can‘t	be	generalized.	This	depends	a	lot	on	the	team	(its	size	and	style	of
development)	and	the	requirements	of	the	project	(and	possibly	also	the
customer).	Clear	rules	must	exist	and	be	agreed	on	by	everybody	in	the	team.

A	Very	Simple	Branching	Strategy

As	already	said,	each	team	must	find	its	own	branching	strategy.	However,	we‘ll
look	at	a	very	simple	workflow	that	should	fit	for	a	lot	of	teams.

One	Long-Running	Branch	Only

Although	you	could	of	course	introduce	multiple	long-running	branches,	there
are	a	couple	of	reasons	against	this:	most	notably,	it	complicates	things!	Having
only	a	single	long-running	branch	in	your	workflow	keeps	things	as	simple	as

possible.

CONCEPT

In	such	a	scenario,	the	“master”	branch	effectively	represents	your	production	code.	This	has	one

important	consequence:	everything	that	gets	merged	into	“master”	must	be	stable!	It	must	be

tested,	reviewed,	and	approved	by	whatever	methods	else	you	have	to	assure	quality.

This	also	means	that	no	work	should	happen	directly	on	“master”	(which	is	also	a	very	common

rule).	Therefore,	if	you	should	find	yourself	typing	“git	checkout	master”,	followed	by	“git	commit”,

you	should	ask	yourself	if	you‘re	doing	the	right	thing...

Topic	Branches

Every	time	you	start	working	on	a	new	feature	or	bugfix,	you	should	create	a
new	branch	for	this	topic.	This	is	a	common	practice	in	almost	all	branching
workflows	and	should	become	a	habit	for	you,	too.

As	you	only	have	a	single	long-running	branch	in	your	repository,	all	new	topic
branches	are	based	off	of	this	“master”	branch.	And	when	your	work	is	done	in
this	topic,	of	course,	it	should	be	merged	back	into	“master”.

In	the	meantime,	it	might	be	that	new	code	gets	integrated	into	“master”	by	your
teammates	while	you‘re	still	working	on	your	feature.	It‘s	both	recommended
and	simple	to	merge	new	stuff	often	from	master	into	your	development	branch.
This	ensures	that	you‘re	staying	up-to-date	-	and	thereby	reduces	the	risk	of
merge	conflicts	that	come	with	large	integrations.

Don‘t	forget	the	golden	rule	that	comes	with	such	a	simple	workflow:	code	that
gets	integrated	into	“master”	must	be	stable!	How	you	ensure	this	is	up	to	you
and	your	team:	use	unit	tests,	code	reviews,	etc.

Keep	the	Remote	in	Sync

In	Git,	remote	and	local	branches	can	be	completely	independent	from	each
other.	However,	it	makes	great	sense	to	regard	local	and	remote	branches	as
counterparts	of	each	other.

This	doesn‘t	mean	that	you	need	to	publish	each	of	your	local	branches:	it	can
still	make	perfect	sense	to	keep	some	of	your	branches	private,	e.g.	when	you‘re
doing	experimental	stuff	that	you‘re	working	on	alone.

However,	if	you	do	publish	a	local	branch,	you	should	name	its	remote
counterpart	branch	the	same.	If	you	have	a	local	branch	named	“login-ui”,	you
should	also	name	it	“login-ui”	when	you	push	it	to	your	remote	repository.

Push	Often

Keeping	the	remote	in	sync	doesn‘t	stop	with	the	structure:	publishing	your	work
often	via	“git	push”	makes	sure	that	everybody	has	always	access	to	the	latest
developments.	And,	as	a	bonus,	it	can	serve	as	your	remote	backup.

Other	Branching	Strategies

The	above	strategy	is	best	suited	for	small,	agile	teams.	Especially	larger	teams
might	need	more	rules	and	more	structures.

Searching	the	web	for	other	teams‘	strategies	will	present	you	with	many
interesting	alternatives.	One	particular	workflow	that	might	be	worth	a	look	is
the	popular	git-flow.

NOTE

In	my	personal	opinion,	git-flow	is	a	bit	too	heavy	of	a	component:

It	comes	with	its	own	script	that	introduces	a	layer	on	top	of	Git	and	its	commands.	This	makes

it	hard	to	use	from	a	GUI	application.

It	comes	with	the	noble	endeavour	to	simplify	Git	-	however,	it	thereby	forces	the	user	to	learn

almost	a	meta-language	with	new	commands.

In	my	opinion,	properly	learning	the	Git	basics	and	agreeing	on	a	common	workflow	in	a	team

makes	“supplements”	like	git-flow	superfluous.

About	Remote	Repositories
About	90%	of	version	control	related	work	happens	in	the	local	repository:
staging,	committing,	viewing	the	status	or	the	log/history,	etc.	Moreover,	if
you're	the	only	person	working	on	your	project,	chances	are	you'll	never	need	to
set	up	a	remote	repository.

Only	when	it	comes	to	sharing	data	with	your	teammates,	a	remote	repo	comes
into	play.	Think	of	it	like	a	"file	server"	that	you	use	to	exchange	data	with	your
colleagues.

Let's	look	at	the	few	things	that	distinguish	local	and	remote	repositories	from
each	other:

Location

Local	repositories	reside	on	the	computers	of	team	members.	In	contrast,	remote
repositories	are	hosted	on	a	server	that	is	accessible	for	all	team	members	-	most
likely	on	the	internet	or	on	a	local	network.

Features

Technically,	a	remote	repository	doesn't	differ	from	a	local	one:	it	contains
branches,	commits,	and	tags	just	like	a	local	repository.	However,	a	local
repository	has	a	working	copy	associated	with	it:	a	directory	where	some	version
of	your	project's	files	is	checked	out	for	you	to	work	with.

A	remote	repository	doesn't	have	such	a	working	directory:	it	only	consists	of	the
bare	".git"	repository	folder.

Creation

You	have	two	options	to	get	a	local	repository	onto	your	machine:	you	can	either
create	a	new,	empty	one	or	clone	it	from	an	existing	remote	repository.

Creating	a	remote	repository	can	also	be	done	in	two	ways:	if	you	already	have	a
local	repository	that	you	want	to	base	it	on,	you	can	clone	this	local	one	with	the
“--bare”	option.	In	case	you	want	to	create	a	blank	remote	repository,	use	“git
init”,	also	with	the	“--bare”	option.

Local	/	Remote	Workflow
In	Git,	there	are	only	a	mere	handful	of	commands	that	interact	with	a	remote
repository.

The	overwhelming	majority	of	work	happens	in	the	local	repository.	Until	this
point	(except	when	we	called	“git	clone”),	we‘ve	worked	exclusively	with	our
local	Git	repository	and	never	left	our	local	computer.	We	were	not	dependent	on
any	internet	or	network	connection	but	instead	worked	completely	offline.	We‘ll
look	at	each	of	these	commands	in	the	course	of	the	following	sections.

Connecting	a	Remote	Repository
When	you	clone	a	repository	from	a	remote	server,	Git	automatically	remembers
this	connection	for	you.	It	saves	it	as	a	remote	called	“origin”	by	default.

In	other	cases	where	you	started	with	a	fresh	local	repository,	no	remote
connections	are	saved.	In	that	situation,	we	need	to	connect	our	local	repository
to	a	new	remote	before	we	can	try	some	remote	interactions:

$	git	remote	add	crash-course-remote	

				https://github.com/gittower/git-crash-course-remote.git

Let‘s	check	if	this	worked	out	ok:

$	git	remote	-v

crash-course-remote			https://github.com/gittower/git-crash-course-

remote.git	(fetch)

crash-course-remote			https://github.com/gittower/git-crash-course-

remote.git	(push)

origin			https://github.com/gittower/git-crash-course	(fetch)

origin			https://github.com/gittower/git-crash-course	(push)

Note	that	each	remote	repository	consists	of	two	lines:	the	first	one	is	the	“fetch
URL”	which	is	used	for	reading	access.	The	second	one	is	the	“push	URL”,	used
when	you	want	to	write	data	to	the	remote.	In	many	cases,	both	URLs	are	the
same.	However,	you	can	also	use	this	to	define	different	URLs	for	read	and	write
access	(for	security	and	performance	reasons).

Also	note	that	you	can	connect	as	many	remotes	to	a	local	repository	as	you	like.
In	my	case,	you	saw	that	another	remote	named	“origin”	is	already	present	-
although	we	didn‘t	configure	this!	This	was	added	by	Git	automatically	when	we
cloned	from	the	remote	server	(which	we	did	at	the	beginning	of	this	book).

Exactly	as	with	the	“master”	branch,	the	name	“origin”	for	this	remote	is	only	a
naming	convention.	It‘s	just	a	normal	remote	repository	like	any	other.

Inspecting	Remote	Data
So,	what	exactly	did	we	achieve	by	connecting	this	new	remote?	Let‘s	look	at
the	list	of	branches:

$	git	branch	-va

		contact-form											56eddd1	Add	new	contact	form	page

*	master																	56eddd1	Add	new	contact	form	page

		remotes/origin/HEAD				->	origin/master

		remotes/origin/master		2b504be	Change	headlines	for	about	and	

imprint

Well,	apparently	not	much	happened:	still	our	two	local	branches	(“master”	and
“contact-form”)	and	two	items	from	our	“origin”	remote
(“remotes/origin/HEAD”	and	“remotes/origin/master”).	So	why	don‘t	we	see
any	data	from	our	new	“crash-course-remote”?	Because,	with	the	“git	remote
add”	command,	we	have	only	established	a	relationship	-	but	no	data	was
exchanged	so	far.

CONCEPT

Remote	Data	is	a	Snapshot
Git	stores	information	about	remote	data	(like	branches,	commits,	etc.)	in	your	local	repository	for

you.	However,	there	is	no	“live”	connection	to	your	remote.	E.g.	you	will	not	automatically	see	new

commits	or	branches	that	your	teammates	published	on	a	remote.

The	information	about	remote	branches,	remote	commits,	etc.	is	only	as	fresh	as	the	last	snapshot	that

you	requested.	There	is	no	“automatic”	update	in	the	background.

To	update	the	information	about	a	remote,	you	have	to	explicitly	request	this
data.	Most	notably,	a	“Fetch”	operation	does	this	for	you:

$	git	fetch	crash-course-remote

From	https://github.com/gittower/git-crash-course-remote

	*	[new	branch]					faq-content	->	crash-course-remote/faq-content

	*	[new	branch]					master	->	crash-course-remote/master

Fetch	will	not	touch	any	of	your	local	branches	or	the	files	in	your	working	copy.
It	just	downloads	data	from	the	specified	remote	and	makes	it	visible	for	you.
You	can	decide	later	if	you	want	to	integrate	new	changes	into	your	local	project.

After	updating	our	information	about	the	“crash-course-remote”,	let‘s	take
another	look	at	the	available	branches:

$	git	branch	-va

		contact-form											56eddd1	Add	new	contact	form	page

*	master																	56eddd1	Add	new	contact	form	page

		remotes/crash-course-remote/faq-content		e29fb3f	Add	FAQ	

questions

		remotes/crash-course-remote/master							2b504be	Change	headlines	

f...

		remotes/origin/HEAD				->	origin/master

		remotes/origin/master		2b504be	Change	headlines	for	about	and	

imprint

Now	we	also	get	information	about	the	branches	on	“crash-course-remote”.

Let‘s	start	working	on	that	“faq-content”	branch.	Currently,	however,	this	is	only
a	remote	branch	pointer.	To	be	able	to	work	with	this	branch	-	to	have	our
working	copy	populated	with	its	files	-	we	need	to	create	a	new	local	branch
that‘s	based	on	this	remote	branch.	We‘re	telling	the	“git	checkout”	command
which	remote	branch	we	want	to	have:

$	git	checkout	--track	crash-course-remote/faq-content

Branch	faq-content	set	up	to	track	remote	branch	faq-content	from	

crash-course-remote.

Switched	to	a	new	branch	‘faq-content’

$	git	branch	-va

		contact-form											56eddd1	Add	new	contact	form	page

*	faq-content												e29fb3f	Add	FAQ	questions

		master																	56eddd1	Add	new	contact	form	page

		remotes/crash-course-remote/faq-content		e29fb3f	Add	FAQ	

questions

		remotes/crash-course-remote/master							2b504be	Change	headlines	

f...

		remotes/origin/HEAD				->	origin/master

		remotes/origin/master		2b504be	Change	headlines	for	about	and	

imprint

This	command	does	a	couple	of	things	for	us:

It	creates	a	new	local	branch	with	the	same	name	as	the	remote	one	(“faq-
content”).

It	checks	this	new	branch	out,	i.e.	it	makes	it	our	local	HEAD	branch	and
populates	our	working	copy	with	the	associated	files	from	that	branch‘s
latest	revision.

Since	we‘re	using	the	“--track”	flag,	it	establishes	a	so-called	“tracking
relationship”	between	the	new	local	branch	and	the	remote	branch	it‘s
based	on.

CONCEPT

Tracking	Branches
In	general,	branches	have	nothing	to	do	with	each	other.	However,	a	local	branch	can	be	set	up	to

“track”	a	remote	branch.	Git	will	then	inform	you	if	one	branch	contains	new	commits	that	the	other

one	doesn‘t	have:

If	your	local	branch	contains	commits	that	haven‘t	been	published	/	pushed	to	the	remote

repository,	your	local	branch	is	“ahead”	of	its	remote	counterpart	branch	by	some	commits.

If	your	teammates,	on	their	part,	have	uploaded	commits	to	the	remote,	the	remote	branch	will

have	commits	that	you	haven‘t	downloaded	/	pulled	to	your	local	branch,	yet.	Your	local	branch

is	then	“behind”	its	remote	counterpart	branch.

In	case	such	a	tracking	relationship	exists,	Git	will	inform	you	about	any	discrepancies	when

performing	“git	status”:

$	git	status

#	On	branch	dev

#	Your	branch	and	‘origin/dev’	have	diverged,

#	and	have	1	and	2	different	commits	each,	respectively.

#

nothing	to	commit	(working	directory	clean)

When	creating	a	new	local	branch	that	is	based	on	an	existing	remote	branch,	establishing	a	tracking

connection	is	easy:	simply	use	the	“git	checkout”	command	with	the	“--track”	flag	set.

With	a	new	local	branch	“faq-content”	checked	out,	we‘re	ready	to	contribute	to
this	feature.	Let‘s	make	some	modifications	to	the	“faq.html”	file	that	you	now
have	on	your	disk	(I	leave	the	details	of	these	changes	to	your	imagination...):

$	git	status

#	On	branch	faq-content

#	Changes	not	staged	for	commit:

#			(use	“git	add	<file>...”	to	update	what	will	be	committed)

#			(use	“git	checkout	--	<file>...”	to	discard	changes	in	working	

#				directory)

#

#							modified:			faq.html

#

no	changes	added	to	commit	(use	“git	add”	and/or	“git	commit	-a”)

$	git	add	faq.html

$	git	commit	-m	“Add	new	question”

[faq-content	814927a]	Add	new	question

	1	file	changed,	1	insertion(+)

Now	it‘s	time	to	share	these	brilliant	changes	we‘ve	just	made	with	our
colleagues:

$	git	push

NOTE

On	your	machine,	this	“git	push”	command	will	not	work	because	you	don‘t	have	write	access	to

this	remote	repository.	If	you	want	to	follow	along	and	execute	this	command	yourself,	I	recommend

you	create	your	own	remote	repository,	for	example	on	GitHub	or	Beanstalk.

The	“git	push”	command	uploads	all	the	new	commits	from	our	current	HEAD
branch	to	its	remote	counterpart	branch.

CONCEPT

Tracking	Connections	Revisited
By	default,	the	“git	push”	command	expects	us	to	provide	it	with	two	things:

To	which	remote	repository	we	want	to	push.

To	which	branch	on	that	remote	repository	we	want	to	push.

The	full	command,	therefore,	looks	something	like	this:

$	git	push	crash-course-remote	faq-conten

With	the	tracking	connection	that	we‘ve	set	up	already,	we‘ve	defined	a	“remote	counterpart”	branch

for	our	local	branch.	Git	can	then	use	this	tracking	information	and	lets	us	use	the	“git	push”	and	“git

pull”	commands	without	further	arguments.

http://www.github.com
http://www.beanstalkapp.com

Integrating	Remote	Changes
Sooner	or	later,	one	of	your	teammates	will	probably	also	share	his	changes	on
your	common	remote	repository.	Before	integrating	these	changes	into	your	local
working	copy,	you	might	first	want	to	inspect	them:

$	git	fetch	origin

$	git	log	origin/master

NOTE

Since	you	will	most	likely	encounter	an	“origin”	remote	in	most	of	your	projects,	we	will	use	this

remote	name	in	our	examples	in	the	rest	of	the	book.

The	“git	log”	command	now	shows	you	the	commits	that	happened	recently	on
the	“master”	branch	of	the	remote	called	“origin”.

If	you	decide	you	want	to	integrate	these	changes	into	your	working	copy,	the
“git	pull”	command	is	what	you	need:

$	git	pull

This	command	downloads	new	commits	from	the	remote	and	directly	integrates
them	into	your	working	copy.	It‘s	actually	a	“fetch”	command	(which	only
downloads	data)	and	a	“merge”	command	(which	integrates	this	data	into	your
working	copy)	combined.

As	with	the	“git	push”	command:	in	case	no	tracking	connection	was	established
for	your	local	HEAD	branch,	you	will	also	have	to	tell	Git	from	which	remote
repository	and	which	remote	branch	you	want	to	pull	(“git	pull	origin	master”,
e.g.).	In	case	a	tracking	already	exists,	a	vanilla	“git	pull”	is	sufficient.

The	target	of	the	integration,	however,	is	independent	of	a	tracking	connection
and	is	always	the	same:	your	local	HEAD	branch	and,	thereby,	your	working
copy.

Publishing	a	Local	Branch
A	local	branch	that	you	create	on	your	machine	is	kept	private	to	you	until	you
explicitly	decide	to	publish	it.	This	means	that	it‘s	perfectly	possible	to	keep
some	of	your	work	private	while	sharing	only	certain	other	branches	with	the
world.

Let‘s	share	our	“contact-form”	branch	(which	hasn‘t	been	published	until	now)
on	the	“origin”	remote:

$	git	checkout	contact-form

Switched	to	branch	‘contact-form’

$	git	push	-u	origin	contact-form

Counting	objects:	36,	done.

Delta	compression	using	up	to	4	threads.

Compressing	objects:	100%	(31/31),	done.

Writing	objects:	100%	(36/36),	90.67	KiB,	done.

Total	36	(delta	12),	reused	0	(delta	0)

Unpacking	objects:	100%	(36/36),	done.

To	file://Users/tobidobi/Desktop/GitCrashkurs/remote-test.git

	*	[new	branch]				contact-form	->	contact-form

Branch	contact-form	set	up	to	track	remote	branch	contact-form	from	

origin.

This	command	tells	Git	to	publish	our	current	local	HEAD	branch	on	the
“origin”	remote	under	the	name	“contact-form”	(it	makes	sense	to	keep	names
between	local	branches	and	their	remote	counterparts	the	same).

The	“-u”	flag	establishes	a	tracking	connection	between	that	newly	created
branch	on	the	remote	and	our	local	“contact-form”	branch.	Performing	the	“git

branch”	command	with	a	special	set	of	options	also	shows	us	the	tracking
relationships	in	square	brackets:

$	git	branch	-vva

*	contact-form											56eddd1	[origin/contact-form]	Add	new	

contact..

		faq-content												814927a	[crash-course-remote/faq-content:	

ahead

																																				1]	Add	new	question

		master																	2dfe283	Implement	the	new	login	box

		remotes/crash-course-remote/faq-content	e29fb3f	Add	FAQ	questions

		remotes/crash-course-remote/master						2b504be	Change	headlines	

f...

		remotes/origin/contact-form													56eddd1	Add	new	contact	

fo...

		remotes/origin/master		56eddd1	Add	new	contact	form	page

After	having	created	that	new	remote	branch	like	this,	updating	it	with	new	local
commits	that	you	create	in	the	future	is	easy:	simply	call	the	“git	push”
command	with	no	options	as	we	did	in	our	earlier	example.

Anyone	with	access	to	your	remote	repository	can	now	also	start	working	on
“contact-form”:	he	can	create	a	local	branch	on	his	machine	that	tracks	this
remote	branch	and	also	push	changes	to	it.

Deleting	Branches
Let‘s	assume	our	work	on	“contact-form”	is	done	and	we‘ve	already	integrated	it
into	“master”.	Since	we	don‘t	need	it	anymore,	we	can	delete	it:

$	git	branch	-d	contact-form

Tidy	as	we	are,	we	also	delete	the	remote	branch	by	simply	adding	the	„-r”	flag:

$	git	branch	-dr	origin/contact-form

Undoing	Things
One	of	the	greatest	aspects	about	Git	is	that	you	can	undo	almost	anything.	In	the
end,	this	means	that	you	actually	can‘t	mess	up:	Git	always	provides	a	safety	net
for	you.

Fixing	the	Last	Commit

No	matter	how	carefully	you	craft	your	commits,	sooner	or	later	you‘ll	forget	to
add	a	change	or	mistype	the	commit‘s	message.	That‘s	when	the	“--amend”	flag
of	the	“git	commit”	command	comes	in	handy:	it	allows	you	to	change	the	very
last	commit	really	easily.

If	you	just	want	to	correct	the	commit	message,	you	simply	“commit	again”	-
without	any	staged	changes	but	with	the	correct	message:

$	git	commit	--amend	-m	“This	is	the	correct	message”

In	case	you	want	to	add	some	more	changes	to	that	last	commit,	you	can	simply
stage	them	as	normal	and	then	commit	again:

$	git	add	<some/changed/files>

$	git	commit	--amend	-m	“commit	message

THE	GOLDEN	RULES	OF	VERSION	CONTROL

#5:	Never	Amend	Published	Commits
Using	the	“amend”	option	is	a	great	little	helper	that	you‘ll	come	to	appreciate	yourself	very	quickly.

However,	you‘ll	need	to	keep	the	following	things	in	mind	when	using	it:

(a)	It	can	only	be	used	to	fix	the	very	last	commit.	Older	commits	can‘t	be	modified	with

“amend”.

(b)	You	should	never	“amend”	a	commit	that	has	already	been	published	/	pushed	to	a	remote

repository!	This	is	because	“amend”	effectively	produces	a	completely	new	commit	object	in

the	background	that	replaces	the	old	one.	If	you‘re	the	only	person	who	had	this	commit,	doing

this	is	safe.	However,	after	publishing	the	original	commit	on	a	remote,	other	people	might

already	have	based	new	work	on	this	commit.	Replacing	it	with	an	amended	version	will	cause

problems.

Undoing	Local	Changes
Changes	are	called	“local”	when	they	haven‘t	been	committed,	yet:	all	the
modifications	that	are	currently	present	in	your	working	directory	are	“local”,
uncommitted	changes.

Sometimes,	you‘ll	produce	code	that...	well...	is	worse	than	what	you	had	before.
These	are	the	times	when	you	want	to	discard	these	changes	and	start	fresh	with
the	last	committed	version.

To	restore	a	file	to	its	last	committed	version,	you	use	the	“git	checkout”
command:

$	git	checkout	HEAD	<file/to/restore>

You	already	know	that	the	“checkout”	command	is	mainly	used	to	switch
branches.	However,	if	you	use	it	with	the	HEAD	reference	and	the	path	to	a	file,
it	will	discard	any	uncommitted	changes	in	that	file.

If	you	need	to	discard	all	current	changes	in	your	working	copy	and	want	to
restore	the	last	committed	version	of	your	complete	project,	the	“git	reset”
command	is	your	friend:

$	git	reset	--hard	HEAD

This	tells	Git	to	replace	the	files	in	your	working	copy	with	the	“HEAD”
revision	(which	is	the	last	committed	version),	discarding	all	local	changes.

NOTE

Discarding	uncommitted	changes	cannot	be	undone.	This	is	because	they	have	never	been	saved	in

your	repository.	Therefore,	Git	has	no	chance	to	restore	this	kind	of	changes.

Always	keep	this	in	mind	when	discarding	local	changes.

Undoing	Committed	Changes

Sometimes	you‘ll	want	to	undo	a	certain	commit.	E.g.	when	you	notice	that	your
changes	were	wrong,	when	you	introduced	a	bug,	or	simply	when	the	customer
has	decided	he	doesn‘t	want	this	anymore.

Using	the	“git	revert”	command	is	one	possibility	to	undo	a	previous	commit.
However,	the	command	doesn‘t	delete	any	commits.	Instead,	it	reverts	the
effects	of	a	certain	commit,	effectively	undoing	it.	It	does	this	by	producing	a
new	commit	with	changes	that	revert	each	of	the	changes	in	that	unwanted
commit.	For	example,	if	your	original	commit	added	a	word	in	a	certain	place,
the	reverting	commit	will	remove	exactly	this	word,	again.

Simply	provide	the	hash	of	the	commit	you	want	to	revert:

$	git	revert	2b504be

[master	364d412]	Revert	“Change	headlines	for	about	and	imprint”

	2	files	changed,	2	insertions(+),	2	deletions	(-)

$	git	log

commit	364d412a25ddce997ce76230598aaa7b9759f434

Author:	Tobias	Günther	<support@learn-git.com>

Date:	Tue	Aug	6	10:23:57	2013	+0200

				Revert	“Change	headlines	for	about	and	imprint”

				This	reverts	commit	2b504bee4083a20e0ef1e037eea0bd913a4d56b6.

Another	tool	to	“undo”	commits	is	the	“git	reset”	command.	It	neither	produces
any	new	commits	nor	does	it	delete	any	old	ones.	It	works	by	resetting	your
current	HEAD	branch	to	an	older	revision	(also	called	“rolling	back”	to	that
older	revision):

$	git	reset	--hard	2be18d9

After	this	command,	your	currently	checked	out	branch	will	be	at	revision
2be18d9.	The	commits	that	came	after	this	one	are	effectively	undone	and	are	no
longer	visible	in	the	history	of	this	branch.

Be	careful,	however:	calling	the	command	with	the	“--hard”	option	will	discard
all	local	changes	that	you	might	currently	have.	The	project	is	completely
restored	as	it	was	in	that	past	revision.

If	you	call	it	with	“--keep”	instead	of	“--hard”,	all	changes	from	rolled	back
revisions	will	be	preserved	as	local	changes	in	your	working	directory.

NOTE

Just	like	“revert”,	the	“reset”	command	also	doesn‘t	delete	any	commits.	It	just	makes	it	look	as	if

they	hadn‘t	existed	and	removes	them	from	the	history.	However,	they	are	still	stored	in	Git‘s

database	for	at	least	30	days.	So	if	you	should	ever	notice	you	_accidentally_	removed	commits	you

still	need,	one	of	your	Git	expert	colleagues	will	still	be	able	to	restore	them	for	you.

Both	commands,	revert	and	reset,	only	affect	your	current	HEAD	branch.
Therefore,	you	should	make	sure	you	have	checked	out	the	correct	branch	before
starting	to	play	with	them.

Inspecting	Changes	in	Detail	with	Diffs
Driving	a	project	forward	requires	a	myriad	of	small	changes.	Understanding
each	of	these	individual	changes	is	the	key	to	understanding	how	the	project
evolved.	While	commands	like	“git	status”	or	the	plain	“git	log”	command	only
inform	you	on	a	very	broad	level,	there	are	other	commands	that	display
modifications	in	detail.

Reading	Diffs

In	version	control,	differences	between	two	versions	are	presented	in	what‘s
called	a	“diff”	(or,	synonymously,	a	“patch”).	Let‘s	take	a	detailed	look	at	such	a
diff	-	and	learn	how	to	read	it.

Compared	Files	a/b

Our	diff	compares	two	items	with	each	other:	item	A	and	item	B.	In	most	cases,

A	and	B	will	be	the	same	file,	but	in	different	versions.	Although	not	used	very
often,	a	diff	could	also	compare	two	completely	unrelated	files	with	each	other
to	show	how	they	differ.

To	make	clear	what	is	actually	compared,	a	diff	output	always	starts	by	declaring
which	files	are	represented	by	“A”	and	“B”.

File	Metadata

The	file	metadata	shown	here	is	a	very	technical	information	which	you‘ll
probably	never	need	in	practice.	The	first	two	numbers	represent	the	hashes	(or,
simply	put:	“IDs”)	of	our	two	files:	Git	saves	every	version	not	only	of	the
project	but	also	of	each	file	as	an	object.	Such	a	hash	identifies	a	file	object	at	a
specific	revision.	The	last	number	is	an	internal	file	mode	identifier	(100644	is
just	a	“normal	file”,	while	100755	specifies	an	executable	file	and	120000
represents	a	symbolic	link).

Markers	for	a/b

Further	down	in	the	output,	the	actual	changes	will	be	marked	as	coming	from	A
or	B.	In	order	to	tell	them	apart,	A	and	B	are	each	assigned	a	symbol:	for	version
A,	this	is	a	minus	(“-”)	sign	and	for	version	B,	a	plus	(“+”)	sign	is	used.

Chunk

A	diff	doesn‘t	show	the	complete	file	from	beginning	to	end:	you	wouldn‘t	want
to	see	everything	in	a	10,000	lines	file,	when	only	2	lines	have	changed.	Instead,
it	only	shows	those	portions	that	were	actually	modified.	Such	a	portion	is	called
a	“chunk”	(or	“hunk”).	In	addition	to	the	actual	changed	lines,	a	chunk	also
contains	a	bit	of	“context”:	some	(unchanged)	lines	before	and	after	the
modification	so	you	can	better	understand	in	what	context	that	change	happened.

Chunk	Header

Each	of	these	chunks	is	prepended	by	a	header.	Enclosed	in	two	“@”	signs	each,
Git	tells	you	which	lines	were	affected.	In	our	case	the	following	lines	are
represented	in	the	first	chunk:

From	file	A	(represented	by	a	“-”),	6	lines	are	extracted,	beginning	from
line	no.	34

From	file	B	(represented	by	a	“+”),	8	lines	are	displayed,	also	starting	from
line	no.	34

The	text	after	the	closing	pair	of	“@@”	aims	to	clarify	the	context,	again:	Git
tries	to	display	a	method	name	or	other	contextual	information	of	where	this
chunk	was	taken	from	in	the	file.	However,	this	greatly	depends	on	the
programming	language	and	doesn‘t	work	in	all	scenarios.

Changes

Each	changed	line	is	prepended	with	either	a	“+”	or	a	“-”	symbol.	As	explained,
these	symbols	help	you	understand	how	exactly	version	A	and	B	look:	a	line	that
is	prepended	with	a	“-”	sign	comes	from	A,	while	a	line	with	a	“+”	sign	comes
from	B.

In	most	cases,	Git	picks	A	and	B	in	such	a	way	that	you	can	think	of	A/-	as	“old”
content	and	B/+	as	“new”	content.

Let‘s	look	at	our	example:

Change	#1	contains	two	lines	prepended	with	a	“+”.	Since	no	counterpart	in
A	existed	for	these	lines	(no	lines	with	“-”),	this	means	that	these	lines	were
added.

Change	#2	is	just	the	opposite:	in	A,	we	have	two	lines	marked	with	“-”

signs.	However,	B	doesn‘t	have	an	equivalent	(no	“+”	lines),	meaning	they
were	deleted.

In	change	#3,	finally,	some	lines	were	actually	modified:	the	two	“-”	lines
were	changed	to	look	like	the	two	“+”	lines	below.

Now	that	we	know	how	to	read	a	diff	output,	let‘s	generate	some!

Inspecting	Local	Changes

Earlier	in	the	book,	we	often	used	the	“git	status”	command	to	see	which	files
were	currently	changed	in	our	working	copy.	To	understand	how	they	were
changed	in	detail,	we	can	ask	“git	diff”:

$	git	diff

diff	--git	a/about.html	b/about.html

index	d09ab79..0c20c33	100644

---	a/about.html

+++	b/about.html

@@	-19,7	+19,7	@@

			</div>

			<div	id=“headerContainer”>

-				<h1>About</h1>

+				<h1>About	This	Project</h1>

			</div>

			<div	id=“contentContainer”>

diff	--git	a/imprint.html	b/imprint.html

index	1932d95..d34d56a	100644

---	a/imprint.html

+++	b/imprint.html

@@	-19,7	+19,7	@@

			</div>

			<div	id=“headerContainer”>

-				<h1>Imprint</h1>

+				<h1>Imprint	/	Disclaimer</h1>

			</div>

			<div	id=“contentContainer”>

Without	further	options,	“git	diff”	will	show	us	all	current	local	changes	in	our
working	copy	that	are	unstaged.

If	you	want	to	see	only	changes	that	have	already	been	added	to	the	Staging
Area,	“git	diff	--staged”	is	your	command	of	choice.

Inspecting	Committed	Changes

You	already	know	that	the	“git	log”	command	provides	you	with	an	overview	of
recent	commits.	If	you	want	to	see	more	than	the	standard	metadata	(hash,
author,	date,	message),	then	you	can	add	the	“-p”	flag	to	get	the	detailed
“patches”	of	each	commit.

Comparing	Branches	&	Revisions

Finally,	you	might	want	to	know	how	one	branch	(or	even	a	specific	revision)
differs	from	another	one.	Let‘s	see	all	the	changes	from	the	“contact-form”
branch	that	we	don‘t	have	in	“master”,	yet:

$	git	diff	master..contact-form

Instead	of	requesting	such	information	on	the	branch	level,	you	can	even
compare	two	arbitrary	revisions	with	each	other:

$	git	diff	0023cdd..fcd6199

Dealing	with	Merge	Conflicts
For	a	lot	of	people,	merge	conflicts	are	as	scary	as	accidentally	formatting	their
hard	drive.	In	the	course	of	this	chapter,	I	want	to	relieve	you	from	this	fear.

You	Cannot	Break	Things

The	first	thing	that	you	should	keep	in	mind	is	that	you	can	always	undo	a	merge
and	go	back	to	the	state	before	the	conflict	occurred.	You‘re	always	able	to	undo
and	start	fresh.

If	you‘re	coming	from	another	version	control	system	like	e.g.	Subversion	you
might	be	traumatized:	conflicts	in	Subversion	have	the	(rightful)	reputation	of
being	incredibly	complex	and	nasty.	One	reason	for	this	is	that	Git,	simply
stated,	works	completely	different	in	this	regard	than	Subversion.	As	a
consequence,	Git	is	able	to	take	care	of	most	things	during	a	merge	-	leaving	you
with	comparatively	simple	scenarios	to	solve.

Also,	a	conflict	will	only	ever	handicap	yourself.	It	will	not	bring	your	complete
team	to	a	halt	or	cripple	your	central	repository.	This	is	because,	in	Git,	conflicts
can	only	occur	on	a	developer‘s	local	machine	-	and	not	on	the	server.

How	a	Merge	Conflict	Occurs

In	Git,	“merging”	is	the	act	of	integrating	another	branch	into	your	current
working	branch.	You‘re	taking	changes	from	another	context	(that‘s	what	a
branch	effectively	is:	a	context)	and	combine	them	with	your	current	working
files.

A	great	thing	about	having	Git	as	your	version	control	system	is	that	it	makes
merging	extremely	easy:	in	most	cases,	Git	will	figure	out	how	to	integrate	new

changes.

However,	there‘s	a	handful	of	situations	where	you	might	have	to	step	in	and	tell
Git	what	to	do.	Most	notably,	this	is	when	changing	the	same	file.	Even	in	this
case,	Git	will	most	likely	be	able	to	figure	it	out	on	its	own.	But	if	two	people
changed	the	same	lines	in	that	same	file,	or	if	one	person	decided	to	delete	it
while	the	other	person	decided	to	modify	it,	Git	simply	cannot	know	what	is
correct.	Git	will	then	mark	the	file	as	having	a	conflict	-	which	you‘ll	have	to
solve	before	you	can	continue	your	work.

How	to	Solve	a	Merge	Conflicts

When	faced	with	a	merge	conflict,	the	first	step	is	to	understand	what	happened.
E.g.:	Did	one	of	your	colleagues	edit	the	same	file	on	the	same	lines	as	you?	Did
he	delete	a	file	that	you	modified?	Did	you	both	add	a	file	with	the	same	name?

Git	will	tell	you	that	you	have	“unmerged	paths”	(which	is	just	another	way	of
telling	you	that	you	have	one	or	more	conflicts)	via	“git	status”:

$	git	status

#	On	branch	contact-form

#	You	have	unmerged	paths.

#			(fix	conflicts	and	run	“git	commit”)

#

#	Unmerged	paths:

#			(use	“git	add	<file>...”	to	mark	resolution)

#

#							both	modified:			contact.html

#

no	changes	added	to	commit	(use	“git	add”	and/or	“git	commit	-a”)

Let‘s	take	an	in-depth	look	on	how	to	solve	the	most	common	case,	when	two
changes	affected	the	same	file	on	the	same	lines.

Now	is	the	time	to	have	a	look	at	the	contents	of	the	conflicted	file.	Git	was	nice
enough	to	mark	the	problematic	area	in	the	file	by	enclosing	it	in	“<<<<<<<
HEAD”	and	“>>>>>>>	[other/branch/name]”.

The	contents	after	the	first	marker	originate	from	your	current	working	branch.
After	the	angle	brackets,	Git	tells	us	where	(from	which	branch)	the	changes
came	from.	A	line	with	“=======”	separates	the	two	conflicting	changes.

Our	job	is	now	to	clean	up	these	lines:	when	we‘re	done,	the	file	should	look
exactly	as	we	want	it	to	look.	It	can	be	necessary	to	consult	the	teammate	who
wrote	the	conflicting	changes	to	decide	which	code	is	finally	correct.	Maybe	it‘s
yours,	maybe	it‘s	his	-	or	maybe	a	mixture	between	the	two.

Opening	the	raw	file	in	your	editor	and	cleaning	it	up	there	is	perfectly	valid,	but
not	very	comfortable.	Using	a	dedicated	merge	tool	can	make	this	job	a	great
deal	easier	(if	you	have	one	installed...).	You	can	configure	your	tool	of	choice
using	the	“git	config”	command.	Consult	your	tool‘s	documentation	for	detailed
instructions.

Then,	in	case	of	a	conflict,	you	can	later	invoke	it	by	simply	typing	“git
mergetool”.

For	this	example,	I‘ve	used	“Kaleidoscope.app”	on	Mac:

The	left	and	right	panes	stand	for	the	conflicting	changes;	a	far	more	elegant
visualization	than	“<<<<<<<”	and	“>>>>>>>”.	You	can	now	simply	toggle
which	change	shall	be	taken.	The	middle	pane	shows	the	resulting	code;	in	good
tools,	you	can	even	edit	this	further.

Now,	after	cleaning	up	the	file	with	the	final	code,	all	that‘s	left	is	to	save	it.	To
give	Git	a	hint	that	you‘re	done	with	this	file,	you	should	quit	the	merge	tool	to
continue.	Behind	the	scenes,	this	told	Git	to	execute	a	“git	add”	command	on	the
(now	formerly)	conflicted	file.	This	marks	the	conflict	as	solved.	Should	you
decide	_not_	to	use	a	merge	tool	and	instead	clean	up	the	file	in	your	editor,
you‘ll	have	to	mark	the	file	as	resolved	by	hand	(by	executing	“git	add
<filename>”).

Finally,	after	solving	all	conflicts,	a	merge	conflict	situation	needs	to	be
concluded	by	a	regular	commit.

How	to	Undo	a	Merge

You	should	always	keep	in	mind	that	you	can	return	to	the	state	before	you
started	the	merge	at	any	time.	This	should	give	you	the	confidence	that	you	can‘t
break	anything.	On	the	command	line,	a	simple	“git	merge	--abort”	will	do	this
for	you.

In	case	you‘ve	made	a	mistake	while	resolving	a	conflict	and	realize	this	only
after	completing	the	merge,	you	can	still	easily	undo	it:	just	roll	back	to	the
commit	before	the	merge	happened	with	“git	reset	--hard	<commit-hash>”	and
start	over	again.

Rebase	as	an	Alternative	to	Merge
While	merging	is	definitely	the	easiest	and	most	common	way	to	integrate
changes,	it‘s	not	the	only	one:	“Rebase”	is	an	alternative	means	of	integration.

NOTE

While	rebasing	definitely	has	its	advantages	over	an	off-the-shelf	merge,	it‘s	also	a	matter	of	taste	to

a	great	extent:	some	teams	prefer	to	use	rebase,	others	prefer	merge.

As	rebasing	is	quite	a	bit	more	complex	than	merging,	my	recommendation	is	that	you	skip	this

chapter	unless	you	and	your	team	are	absolutely	sure	you	want	to	use	it.	Another	option	is	to	return

to	this	chapter	after	you‘ve	had	some	practice	with	the	basic	workflow	in	Git.

Understanding	Merge	a	Little	Better

Before	we	can	dive	into	rebase,	we‘ll	have	to	get	into	a	little	more	detail	about
merge.	When	Git	performs	a	merge,	it	looks	for	three	commits:

(1)	Common	ancestor	commit
If	you	follow	the	history	of	two	branches	in	a	project,	they	always	have	at
least	one	commit	in	common:	at	this	point	in	time,	both	branches	had	the
same	content	and	then	evolved	differently.

(2)	+	(3)	Endpoints	of	each	branch
The	goal	of	an	integration	is	to	combine	the	current	states	of	two	branches.
Therefore,	their	respective	latest	revisions	are	of	special	interest.

Combining	these	three	commits	will	result	in	the	integration	we‘re	aiming	for.

Fast-Forward	or	Merge	Commit

In	very	simple	cases,	one	of	the	two	branches	doesn‘t	have	any	new	commits
since	the	branching	happened	-	its	latest	commit	is	still	the	common	ancestor.

In	this	case,	performing	the	integration	is	dead	simple:	Git	can	just	add	all	the
commits	of	the	other	branch	on	top	of	the	common	ancestor	commit.	In	Git,	this
simplest	form	of	integration	is	called	a	“fast-forward”	merge.	Both	branches	then
share	the	exact	same	history.

In	a	lot	of	cases,	however,	both	branches	moved	forward	individually.

To	make	an	integration,	Git	will	have	to	create	a	new	commit	that	contains	the
differences	between	them	-	the	merge	commit.

Human	Commits	&	Merge	Commits

Normally,	a	commit	is	carefully	created	by	a	human	being.	It’s	a	meaningful	unit
that	wraps	only	related	changes	and	annotates	them	with	a	comment.

A	merge	commit	is	a	bit	different:	instead	of	being	created	by	a	developer,	it	gets
created	automatically	by	Git.	And	instead	of	wrapping	a	set	of	related	changes,
its	purpose	is	to	connect	two	branches,	just	like	a	knot.	If	you	want	to	understand
a	merge	operation	later,	you	need	to	take	a	look	at	the	history	of	both	branches
and	the	corresponding	commit	graph.

Integrating	with	Rebase

Some	people	prefer	to	go	without	such	automatic	merge	commits.	Instead,	they
want	the	project’s	history	to	look	as	if	it	had	evolved	in	a	single,	straight	line.	No
indication	remains	that	it	had	been	split	into	multiple	branches	at	some	point.

Let‘s	walk	through	a	rebase	operation	step	by	step.	The	scenario	is	the	same	as
in	the	previous	examples:	we	want	to	integrate	the	changes	from	branch-B	into
branch-A,	but	now	by	using	rebase.

The	command	for	this	is	very	plain:

$	git	rebase	branch-B

First,	Git	will	“undo”	all	commits	on	branch-A	that	happened	after	the	lines
began	to	branch	out	(after	the	common	ancestor	commit).	However,	of	course,	it
won’t	discard	them:	instead	you	can	think	of	those	commits	as	being	“saved
away	temporarily”.

Next,	it	applies	the	commits	from	branch-B	that	we	want	to	integrate.	At	this
point,	both	branches	look	exactly	the	same.

In	the	final	step,	the	new	commits	on	branch-A	are	now	reapplied	-	but	on	a	new
position,	on	top	of	the	integrated	commits	from	branch-B	(they	are	re-based).

The	result	looks	like	development	had	happened	in	a	straight	line.	Instead	of	a
merge	commit	that	contains	all	the	combined	changes,	the	original	commit
structure	was	preserved.

The	Pitfalls	of	Rebase

Of	course,	using	rebase	isn‘t	just	sunshine	and	roses.	You	can	easily	shoot
yourself	in	the	foot	if	you	don‘t	mind	an	important	fact:	rebase	rewrites	history.

As	you	might	have	noticed	in	the	last	diagram	above,	commit	“C3*”	has	an
asterisk	symbol	added.	This	is	because,	although	it	has	the	same	contents	as
“C3”,	it‘s	effectively	a	different	commit.	The	reason	for	this	is	that	it	now	has	a
new	parent	commit	(C4,	which	it	was	rebased	onto,	compared	to	C1,	when	it
was	originally	created).

A	commit	has	only	a	handful	of	important	properties	like	the	author,	date,
changeset	-	and	who	its	parent	commit	is.	Changing	any	of	this	information
effectively	creates	a	new	commit,	with	a	new	hash	ID.

Rewriting	history	in	such	a	way	is	unproblematic	as	long	as	it	only	affects
commits	that	haven‘t	been	published,	yet.	If	instead	you‘re	rewriting	commits
that	have	already	been	pushed	to	a	public	server,	danger	is	at	hand:	another
developer	has	probably	already	based	work	on	the	original	C3	commit,	making	it
indispensable	for	other	newer	commits.	Now	you	introduce	the	contents	of	C3
another	time	(with	C3*),	and	additionally	try	to	remove	the	original	C3	from	the
timeline	with	your	rebase.	This	smells	like	trouble...

Therefore,	you	should	use	rebase	only	for	cleaning	up	your	local	work	-	but
never	to	rebase	commits	that	have	already	been	published.

Submodules
Often	in	a	project,	you	want	to	include	libraries	and	other	resources.	The	manual
way	is	to	simply	download	the	necessary	code	files,	copy	them	to	your	project,
and	commit	the	new	files	into	your	Git	repository.

While	this	is	a	valid	approach,	it's	not	the	cleanest	one.	By	casually	throwing
those	library	files	into	your	project,	we're	inviting	a	couple	of	problems:

This	mixes	external	code	with	our	own,	unique	project	files.	The	library,
actually,	is	a	project	of	itself	and	should	be	kept	separate	from	our	work.
There's	no	need	to	keep	these	files	in	the	same	version	control	context	as
our	project.

Should	the	library	change	(because	bugs	were	fixed	or	new	features	added),
we'll	have	a	hard	time	updating	the	library	code.	Again,	we	need	to
download	the	raw	files	and	replace	the	original	items.

Since	these	are	quite	common	problems	in	everyday	projects,	Git	of	course
offers	a	solution:	Submodules.

Repositories	Inside	Repositories

A	"Submodule"	is	just	a	standard	Git	repository.	The	only	specialty	is	that	it	is
nested	inside	a	parent	repository.	In	the	common	case	of	including	a	code	library,
you	can	simply	add	the	library	as	a	Submodule	in	your	main	project.

A	Submodule	remains	a	fully	functional	Git	repository:	you	can	modify	files,
commit,	pull,	push,	etc.	from	inside	it	like	with	any	other	repository.

Let's	see	how	to	work	with	Submodules	in	practice.

Adding	a	Submodule

In	our	sample	project,	we	create	a	new	"lib"	folder	to	host	this	(and	future)
library	code.

$	mkdir	lib

$	cd	lib

With	the	"git	submodule	add"	command,	we'll	add	a	little	Javascript	library	from
GitHub:

$	git	submodule	add	https://github.com/djyde/ToProgress

Let's	have	a	look	at	what	just	happened:

(1)	The	command	started	a	simple	cloning	process	of	the	specified	Git
repository:

Cloning	into	'lib/ToProgress'...

remote:	Counting	objects:	180,	done.

remote:	Compressing	objects:	100%	(89/89),	done.

remote:	Total	180	(delta	51),	reused	0	(delta	0),	pack-reused	91

Receiving	objects:	100%	(180/180),	29.99	KiB	|	0	bytes/s,	done.

Resolving	deltas:	100%	(90/90),	done.

Checking	connectivity...	done.

$	cd	lib

(2)	Of	course,	this	is	reflected	in	our	file	structure:	our	project	now	contains	a
new	"ToProgess"	folder	inside	the	"lib"	directory.	As	you	can	see	from	the	".git"
subfolder	contained	herein,	this	is	a	fully-featured	Git	repository.

CONCEPT

It's	important	to	understand	that	the	actual	contents	of	a	Submodule	are	not	stored	in	its	parent

repository.	Only	its	remote	URL,	the	local	path	inside	the	main	project	and	the	checked	out	revision

are	stored	by	the	main	repository.

Of	course,	the	Submodule's	working	files	are	placed	inside	the	specified	directory	in	your	project	-	in

the	end,	you	want	to	use	the	library's	files!	But	they	are	not	part	of	the	parent	project's	version	control

contents.

(3)	A	new	".gitmodules"	file	was	created.	This	is	where	Git	keeps	track	of	our
Submodules	and	their	configuration:

[submodule	"lib/ToProgress"]

				path	=	lib/ToProgress

				url	=	https://github.com/djyde/ToProgress

(4)	In	case	you're	interested	in	the	inner	workings	of	Git:	besides	the
".gitmodules"	configuration	file,	Git	also	keeps	record	of	the	Submodule	in	your
local	".git/config"	file.	Finally,	it	also	keeps	a	copy	of	each	Submodule's	.git
repository	in	its	internal	".git/modules"	folder.

CONCEPT

Git's	internal	management	of	Submodules	are	quite	complex	(as	you	can	already	guess	from	all	the

.gitmodules,	.git/config,	and	.git/modules	entries...).	Therefore,	it's	highly	recommended	not	to	mess

with	configuration	files	and	values	manually.	Please	do	yourself	a	favor	and	always	use	proper	Git

commands	to	manage	Submodules.

Let's	have	a	look	at	our	project's	status:

$	git	status

On	branch	master

Changes	to	be	committed:

				(use	"git	reset	HEAD	..."	to	unstage)

				new	file:			.gitmodules

				new	file:			lib/ToProgress

Git	regards	adding	a	Submodule	as	a	modification	like	any	other	-	and	requests
you	to	commit	it	to	the	repository:

$	git	commit	-m	"Add	'ToProgress'	Javascript	library	as	Submodule"

Congratulations:	we've	now	successfully	added	a	Submodule	to	our	main
project!	Before	we	look	at	a	couple	of	use	cases,	let's	see	how	you	can	clone	a
project	that	already	has	Submodules	added.

Cloning	a	Project	with	Submodules

You	already	know	that	a	project	repository	does	not	contain	its	Submodules'
files;	the	parent	repository	only	saves	the	Submodules'	configurations	as	part	of
version	control.	This	shows	when	you	clone	a	project	that	contains	Submodules:
by	default,	the	"git	clone"	command	only	downloads	the	project	itself.	Our	"lib"

folder,	however,	would	stay	empty.

You	have	two	options	to	end	up	with	a	populated	"lib"	folder	(or	wherever	else
you	choose	to	save	your	Submodules;	"lib"	is	just	an	example):

(a)	You	can	add	the	"--recurse-submodules"	option	to	"git	clone";	this	tells
Git	to	also	initialize	all	Submodules	when	the	cloning	is	finished.

(b)	If	you	used	a	simple	"git	clone"	command	without	this	option,	you	need
to	initialize	the	Submodules	afterwards	with	"git	submodule	update	--init	--
recursive"

Checking	Out	a	Revision

A	Git	repository	can	have	countless	committed	versions,	but	only	one	version's
files	can	be	in	your	working	directory.	Therefore,	like	with	any	Git	repository,
you	have	to	decide	which	revision	of	your	Submodule	shall	be	checked	out.

CONCEPT

Unlike	normal	Git	repositories,	Submodules	always	point	to	a	specific	commit	-	not	a	branch.	This	is

because	the	contents	of	a	branch	can	change	over	time,	as	new	commits	arrive.	Pointing	at	a	specific

revision,	on	the	other	hand,	guarantees	that	the	correct	code	is	always	present.

Let's	say	we	want	to	have	an	older	version	of	our	"ToProgress"	library	in	our
project.	First,	we'll	have	a	look	at	the	library's	commit	history.	We	change	into
the	Submodule's	base	folder	and	call	the	"log"	command:

$	cd	lib/ToProgress/

$	git	log	--oneline	--decorate

Before	we	take	a	look	at	the	actual	history,	I'd	like	to	stress	an	important	point:

Git	commands	are	context-sensitive!	By	moving	into	the	Submodule	directory
on	the	command	line,	all	Git	commands	that	we	perform	will	be	executed	in	the
context	of	the	Submodule,	not	its	parent	repository.

Now,	in	the	log	output,	we	spot	a	commit	that	is	tagged	"0.1.1":

83298f7	(HEAD,	master)	update	.gitignore

a3b6186	remove	page

ed693b7	update	doc

3557a0e	(tag:	0.1.1)	change	version	code

2421796	update	readme

This	is	the	version	we	want	to	have	in	our	project.	To	start	with,	we	can	simply
check	out	this	commit:

$	git	checkout	0.1.1

Let's	see	what	our	parent	repository	thinks	about	all	this.	In	the	main	project's
base	folder,	execute:

$	git	submodule	status

+3557a0e0f7280fb3aba18fb9035d204c7de6344f			lib/ToProgress	(0.1.1)

With	"git	submodule	status",	we're	told	which	revision	each	Submodule	is
checked	out	at.	The	little	"+"	symbol	in	front	of	the	hash	is	especially	important:
it	tells	us	that	the	Submodule	is	at	a	different	revision	than	is	officially	recorded
in	the	parent	repository.	This	makes	sense	-	since	we	just	changed	the	checked
out	revision	to	the	commit	tagged	"0.1.1".

When	performing	a	simple	"git	status"	in	the	parent	repository,	we	see	that	Git
regards	moving	the	Submodule's	pointer	as	a	change	like	any	other:

$	git	status

On	branch	master

Changes	not	staged	for	commit:

				(use	"git	add	..."	to	update	what	will	be	committed)

				(use	"git	add	..."	to	update	what	will	be	committed)

				(use	"git	checkout	--	..."	to	discard	changes	in	working	

directory)

				modified:			lib/ToProgress	(new	commits)

We	need	to	commit	this	to	the	repository	in	order	to	make	it	official:

$	git	commit	-a	-m	"Moved	Submodule	pointer	to	version	1.1.0"

Updating	a	Submodule	When	its	Pointer	was	Moved

We	just	saw	how	to	check	out	a	Submodule	at	a	specific	revision.	But	what	if
one	of	our	teammates	does	this	in	our	project?	Let's	say	we	integrate	his	changes
(through	pull,	merge,	or	rebase	for	example)	after	he	has	moved	the	Submodule
pointer	to	a	different	revision:

$	git	pull

Updating	43d0c47..3919c52

Fast-forward

	lib/ToProgress	|	2	+-

	1	file	changed,	1	insertion(+),	1	deletion(-)

Git	informs	us,	in	a	rather	shy	way,	that	"lib/ToProgress"	was	changed.	Again,
"git	submodule	status"	provides	more	detailed	information:

$	git	submodule	status

+83298f72c975c29f727c846579c297938492b245	lib/ToProgress	(0.1.1-8-

g83298f7)

Remember	that	little	"+"	sign?	It	tells	us	that	the	Submodule	revision	was	moved
-	the	version	we	currently	have	checked	out	in	our	project	is	not	the	one	that	is
"officially"	committed.

The	"update"	command	helps	us	correct	this:

$	git	submodule	update	lib/ToProgress

Submodule	path	'lib/ToProgress':	checked	out	

'3557a0e0f7280fb3aba18fb9035d204c7de6344f'

NOTE

In	most	cases,	you	can	use	the	"git	submodule"	family	of	commands	without	specifying	a	particular

Submodule.	By	providing	a	path	like	in	the	example	above,	however,	you	can	address	just	a	certain

Submodule.

We	now	have	the	same	version	of	the	Submodule	checked	out	that	our	teammate
had	committed	to	the	repository.

Note	that	the	"update"	command	also	downloads	changes	for	you:	imagine	that
your	teammate	moved	the	Submodule's	pointer	to	a	revision	that	you	don't	have,
yet.	In	that	case,	Git	fetches	the	corresponding	revision	in	the	Submodule	and
then	checks	it	out	for	you.	Very	handy.

Checking	for	New	Changes	in	the	Submodule

Normally,	you	don't	want	library	code	to	change	very	often:	you'll	want	to	use	a
version	of	the	Submodule	that	you've	tested	and	which	you	know	works
flawlessly	with	your	own	code.

However,	one	of	the	best	things	about	Submodules	is	that	you	can	easily	keep	up

with	new	releases	(or	minor	new	improvements).

Let's	see	if	there's	new	code	available	in	the	Submodule:

				$	cd	lib/ToProgress

				$	git	fetch

				remote:	Counting	objects:	3,	done.

				remote:	Compressing	objects:	100%	(3/3),	done.

				remote:	Total	3	(delta	0),	reused	0	(delta	0),	pack-reused	0

				Unpacking	objects:	100%	(3/3),	done.

				From	https://github.com/djyde/ToProgress

								83298f7..3e20bc2		master					->	origin/master

Note	that,	to	do	this,	we	simply	change	into	the	Submodule	folder	-	and	can	then
work	like	with	any	normal	Git	repository	(because	it	is	a	normal	Git	repository).
The	"git	fetch"	command,	in	this	case,	shows	that	there	are	indeed	some	new
changes	on	the	Submodule's	remote.

CONCEPT

Before	we	go	ahead	and	integrate	these	changes,	I'd	like	to	stress	an	important	point	once	more.

When	checking	the	Submodule's	status,	we're	informed	that	we're	on	a	detached	HEAD:

$	git	status

					HEAD	detached	at	3557a0e

				nothing	to	commit,	working	directory	clean

Normally,	in	Git,	you	always	have	a	certain	branch	checked	out.	However,
you	can	also	choose	to	check	out	a	specific	commit	(one	that	is	not	the	tip
of	a	branch).	This	is	a	rather	rare	case	in	Git	and	should	normally	be
avoided.

Now,	let's	integrate	the	new	changes	by	pulling	them	into	our	local	Submodule
repository.	Note	that	you	cannot	use	the	shorthand	"git	pull"	syntax	but	instead
need	to	specify	the	remote	and	branch,	too.

This	is	because	of	the	"detached	HEAD"	state	we're	in:	since	you're	not	a	local
branch	at	the	moment,	you	need	to	tell	Git	on	which	branch	you	want	to
integrate	the	pulled	down	changes.

$	git	pull	origin	master

If	you	now	were	to	execute	"git	status"	once	more,	you'd	notice	that	we're	still	on
that	same	detached	HEAD	commit	as	before	-	the	currently	checked	out	commit
was	not	moved	like	when	we're	on	a	branch.	If	we	want	to	use	the	new
Submodule	code	in	our	main	project,	we	have	to	explicitly	move	the	HEAD
pointer:

$	git	checkout	master

We're	done	working	in	our	Submodule;	let's	move	back	into	our	main	project:

$	cd	../..

$	git	submodule	status

+3e20bc25457aa56bdb243c0e5c77549ea0a6a927	lib/ToProgress	(0.1.1-9-

g3e20bc2)

Since	we've	just	moved	the	Submodule	pointer	to	a	different	revision,	we	need	to
commit	this	change	to	the	main	repository	to	make	it	official.

Working	in	a	Submodule

In	some	cases,	you	might	want	to	make	some	custom	changes	to	a	Submodule.
You've	already	seen	that	working	in	a	Submodule	is	like	working	in	any	other

Git	repository:	any	Git	commands	that	you	perform	inside	a	Submodule
directory	are	executed	in	the	context	of	that	sub-repository.

Let's	say	you	want	to	change	a	tiny	bit	in	a	Submodule;	you	make	your	changes
in	the	corresponding	files,	add	them	to	the	staging	area	and	commit	them.

This	might	already	be	the	first	banana	skin:	you	should	make	sure	you	currently
have	a	branch	checked	out	in	the	Submodule	before	you	commit.	That's	because
if	you're	in	a	detached	HEAD	situation,	your	commit	will	easily	get	lost:	it's	not
attached	to	any	branch	and	will	be	gone	as	soon	as	you	check	out	anything	else.

Apart	from	that,	everything	else	you've	already	learned	still	applies:	in	the	main
project,	"git	submodule	status"	will	tell	you	that	the	Submodule	pointer	was
moved	and	that	you'll	have	to	commit	the	move.

By	the	way:	In	case	you	have	uncommitted	local	changes	inside	the	Submodule,
Git	will	also	tell	you	in	the	main	project:

$	git	status

...

				modified:			lib/ToProgress	(modified	content)

Make	sure	to	always	keep	a	clean	state	in	your	Submodules.

Deleting	a	Submodule

Rather	seldomly	will	you	want	to	remove	a	Submodule	from	your	project.	But	if
you	really	want	to	do	this,	please	don't	do	this	manually:	trying	to	mess	with	all
the	configuration	files	in	a	correct	way	will	almost	inevitably	cause	problems.

$	git	submodule	deinit	lib/ToProgress

$	git	rm	lib/ToPogress

$	git	status

...

				modified:			.gitmodules

				deleted:				lib/ToProgress

With	"git	submodule	deinit",	we	made	sure	that	the	Submodule	is	cleanly
removed	from	the	configuration	files.	With	"git	rm",	we	finally	delete	the	actual
Submodule	files	-	and	other	obsolete	parts	of	your	configuration.

Commit	this	and	your	Submodule	will	be	cleanly	removed	from	the	project.

Workflows	with	git-flow
When	using	version	control	in	a	team,	it's	crucial	to	agree	on	a	workflow.	Git	in
particular	allows	to	do	lots	of	things	in	lots	of	ways.	However,	if	you	don't	use	a
common	workflow	in	your	team,	confusion	is	inevitable.

In	principle,	you're	free	to	define	your	workflow	of	choice	just	as	you	want	it	-
or	you	simply	adopt	an	existing	one.

In	this	chapter,	we'll	look	at	a	workflow	that	has	become	quite	popular	in	recent
years:	"git-flow".

What	is	git-flow?

By	installing	git-flow,	you'll	have	a	handful	of	extra	commands	available.	Each
of	these	commands	performs	multiple	tasks	automatically	and	in	a	predefined
order.	And	voila	-	there	we	have	our	workflows!

git-flow	is	by	no	means	a	replacement	for	Git.	It's	just	a	set	of	scripts	that
combine	standard	Git	commands	in	a	clever	way.

Strictly	speaking,	you	wouldn't	even	have	to	install	anything	to	use	the	git-flow
workflows:	you	could	easily	learn	which	workflow	involves	which	individual
tasks	-	and	simply	perform	these	Git	commands	(with	the	right	parameters	and	in
the	right	order)	on	your	own.	The	git-flow	scripts,	however,	save	you	from
having	to	memorize	all	of	this.

Installing	git-flow

A	couple	of	different	forks	of	git-flow	have	emerged	in	recent	years.	In	this
chapter,	we're	using	one	of	the	most	popular	ones:	the	AVH	Edition.

https://github.com/petervanderdoes/gitflow/

For	details	on	how	to	install	git-flow,	please	have	a	look	at	the	official
documentation.

Setting	Up	git-flow	in	a	Project

When	you	"switch	on"	git-flow	in	a	project,	Git	still	works	the	same	way	in	this
repository.	It	is	totally	up	to	you	to	use	special	git-flow	commands	and	normal
Git	commands	in	this	repository	side	by	side.	Put	another	way,	git-flow	doesn't
alter	your	repository	in	any	dramatic	way.

That	being	said,	however,	git-flow	indeed	expects	some	conventions.	Let's
initialize	it	in	a	new	project	and	we'll	instantly	see:

$	git	flow	init

Initialized	empty	Git	repository	in	/Users/tobi/acme-website/.git/

Branch	name	for	production	releases:	[master]

Branch	name	for	"next	release"	development:	[develop]

How	to	name	your	supporting	branch	prefixes?

Feature	branches?	[feature/]

Release	branches?	[release/]

Hotfix	branches?	[hotfix/]	

When	calling	"git	flow	init"	in	the	base	folder	of	a	project	(no	matter	if	it	already
contains	an	existing	Git	repository	or	not),	an	interactive	setup	assistant	guides
you	through	the	initialization.	This	sounds	a	bit	pompous...	because	actually,	it's
just	about	configuring	some	naming	conventions	for	your	branches.	Although
the	setup	assistant	allows	you	to	enter	any	names	you	like,	I	strongly	suggest	you
stick	with	the	default	naming	scheme	and	simply	confirm	each	step.

Branching	Model

https://github.com/petervanderdoes/gitflow/wiki#installing-git-flow

The	git-flow	model	expects	two	main	branches	in	a	repository:

master	always	and	exclusively	contains	production	code.	You	don't	work
directly	on	the	master	branch	but	instead	in	designated,	separate	feature
branches	(which	we'll	talk	about	in	a	minute).	Not	committing	directly	to
the	master	branch	is	a	common	hygiene	rule	in	many	workflows.

develop	is	the	basis	for	any	new	development	efforts	you	make:	when	you
start	a	new	feature	branch	it	will	be	based	on	develop.	Additionally,	this
branch	also	aggregates	any	finished	features,	waiting	to	be	integrated	and
deployed	via	master.

These	two	branches	are	so-called	long-running	branches:	they	remain	in	your
project	during	its	whole	lifetime.	Other	branches,	e.g.	for	features	or	releases,
only	exist	temporarily:	they	are	created	on	demand	and	are	deleted	after	they've
fulfilled	their	purpose.

Let's	start	exploring	all	of	this	in	some	real-world	use	cases.

Feature	Development

Working	on	a	feature	is	by	far	the	most	common	task	for	any	developer.	That's
why	git-flow	offers	a	couple	of	workflows	around	feature	development	that	help
do	this	in	an	organized	way.

Starting	a	New	Feature

Let's	start	working	on	a	new	"rss-feed"	feature:

$	git	flow	feature	start	rss-feed

Switched	to	a	new	branch	'feature/rss-feed'

Summary	of	actions:

-	A	new	branch	'feature/rss-feed'	was	created,	based	on	'develop'

-	You	are	now	on	branch	'feature/rss-feed'

CONCEPT

At	the	end	of	each	command's	output,	git-flow	adds	a	(very	helpful)	description	of	what	it	just	did.

When	you	need	help	about	a	command	up	front	you	can	always	request	help,	e.g.:

$	git	flow	feature	help

By	starting	a	feature	like	this,	git-flow	created	a	new	branch	called	"feature/rss-
feed"	(the	"feature/"	prefix	was	one	of	the	configurable	options	on	setup).	As
you	already	know,	using	separate	branches	for	your	feature	development	is	one
of	the	most	important	ground	rules	in	version	control.

git-flow	also	directly	checks	out	the	new	branch	so	you	can	jump	right	into
work.

Finishing	a	Feature

After	some	time	of	hard	work	and	a	number	of	clever	commits,	our	feature	is
finally	done:

$	git	flow	feature	start	rss-feed

Switched	to	a	new	branch	'feature/rss-feed'

Updating	6bcf266..41748ad

Fast-forward

				feed.xml	|	0

				1	file	changed,	0	insertions(+),	0	deletions(-)

				create	mode	100644	feed.xml

Deleted	branch	feature/rss-feed	(was	41748ad).

Most	importantly,	the	"feature	finish"	command	integrates	our	work	back	into
the	main	"develop"	branch.	There,	it	waits...

1.	 ...to	be	thoroughly	tested	in	the	broader	"develop"	context.

2.	 ...to	be	released	at	a	later	time	with	all	the	other	features	that	accumulate	in
the	"develop"	branch.

git-flow	also	cleans	up	after	us:	it	deletes	the	(now	obsolete)	feature	branch	and
checks	out	the	"develop"	branch.

Managing	Releases

Release	management	is	another	important	topic	that	version	control	deals	with.
Let's	look	at	how	to	create	and	publish	releases	with	git-flow.

Creating	a	New	Release

you	feel	that	your	current	code	on	the	"develop"	branch	is	ripe	for	a	new	release?
This	should	mean	that	it	(a)	contains	all	the	new	features	and	fixes	and	(b)	has
been	thoroughly	tested.	If	both	(a)	and	(b)	are	true,	you're	ready	to	start	a	new
release:

$	git	flow	release	start	1.1.5

Switched	to	a	new	branch	'release/1.1.5'

Note	that	release	branches	are	named	using	version	numbers.	In	addition	to
being	an	obvious	choice,	this	naming	scheme	has	a	a	nice	side-effect:	git-flow
can	automatically	tag	the	release	commit	appropriately	when	we	later	finish	the
release.

With	a	new	release	branch	in	place,	popular	last	preparations	include	bumping
the	version	number	(if	your	type	of	project	keeps	note	of	the	version	number

somewhere	in	a	file)	and	making	any	last-minute	adaptions.

Finishing	the	Release

It's	time	to	hit	the	red	danger	button	and	finish	our	release:

git	flow	release	finish	1.1.5

This	triggers	a	couple	of	actions:

1.	 First,	git-flow	pulls	from	the	remote	repository	to	make	sure	you	are	up-to-
date

2.	 Then,	the	release	content	is	merged	back	into	both	"master"	and	"develop"
(so	that	not	only	the	production	code	is	up-to-date,	but	also	new	feature
branches	will	be	based	off	the	latest	code).

3.	 To	easily	identify	and	reference	it	later,	the	release	commit	is	tagged	with
the	release's	name	("1.1.5"	in	our	case).

4.	 To	clean	up,	the	release	branch	is	deleted	and	we're	back	on	"develop".

From	Git's	point	of	view,	the	release	is	now	finished.	Depending	on	your	setup,
committing	on	"master"	might	have	already	triggered	your	deployment	process	-
or	you	now	manually	do	anything	necessary	to	get	your	software	product	into
the	hands	of	your	users.

Hotfixes

As	thoroughly	tested	as	your	releases	might	be:	all	too	often,	just	a	couple	of
hours	or	days	later,	a	little	bug	might	nonetheless	show	its	antennas.	For	cases
like	these,	git-flow	offers	the	special	"hotfix"	workflow	(since	neither	a	"feature"
branch	nor	a	"release"	branch	would	be	appropriate).

Creating	Hotfixes
$	git	flow	hotfix	start	missing-link

This	creates	a	new	branch	named	"hotfix/missing-link".	Since	we	need	to	fix
production	code,	the	hotfix	branch	is	based	off	of	"master".	This	is	also	the	most
obvious	distinction	from	release	branches,	which	are	based	off	of	the	"develop"
branch.	Because	you	wouldn't	want	to	base	a	production	hotfix	on	your	(still
unstable)	develop	code...

Just	like	with	a	release,	however,	we	bump	up	our	project's	version	number	and	-
of	course	-	fix	that	bug!

Finishing	Hotfixes

With	our	solution	committed	to	the	hotfix	branch,	it's	time	to	wrap	up:

$	git	flow	hotfix	finish	missing-link

The	procedure	is	very	similar	to	finishing	a	release:

The	changes	are	merged	both	into	"master"	as	well	as	into	"develop"	(to
make	sure	the	bug	doesn't	slip	into	the	next	release,	again).

The	hotfix	is	tagged	for	easy	reference.

The	branch	is	deleted	and	"develop"	is	checked	out	again.

As	with	a	release,	now's	the	time	to	build	/	deploy	your	product	(in	case	this
hasn't	already	been	triggered	automatically).

Workflows:	A	Recap

Let	me	finish	this	chapter	by	stressing	an	important	point	once	more:	git-flow

doesn't	add	any	functionality	on	top	of	Git.	It's	simply	a	set	of	scripts	that	bundle
Git	commands	into	workflows.

However,	agreeing	on	a	fixed	process	makes	collaborating	in	a	team	much
easier:	everybody,	from	the	"Git	pro"	to	the	"version	control	newbie",	knows
how	certain	tasks	ought	to	be	done.

Keep	in	mind,	though,	that	you	don't	have	to	use	git-flow	to	achieve	this:	often,
after	some	time	and	experience,	teams	notice	that	they	don't	need	git-flow
anymore.	Once	the	basic	parts	and	goals	of	a	workflow	are	understood,	you're
free	to	define	your	own.

Handling	Large	Files	with	LFS
Working	with	large	binary	files	can	be	quite	a	hassle:	they	bloat	your	local
repository	and	leave	you	with	Gigabytes	of	data	on	your	machine.	Most
annoyingly,	the	majority	of	this	huge	amount	of	data	is	probably	useless	for	you:
most	of	the	time,	you	don't	need	each	and	every	version	of	a	file	on	your	disk.

This	problem	in	mind,	Git's	standard	feature	set	was	enhanced	with	the	"Large
File	Storage"	extension	-	in	short:	"Git	LFS".	An	LFS-enhanced	local	Git
repository	will	be	significantly	smaller	in	size	because	it	breaks	one	basic	rule	of
Git	in	an	elegant	way:	it	does	not	keep	all	of	the	project's	data	in	your	local
repository.

Let's	look	at	how	this	works.

Only	the	Data	You	Need

Let's	say	you	have	a	100	MB	Photoshop	file	in	your	project.	When	you	make	a
change	to	this	file	(no	matter	how	tiny	it	might	be),	committing	this	modification
will	save	the	complete	file	(huge	as	it	is)	in	your	repository.	After	a	couple	of
iterations,	your	local	repository	will	quickly	weigh	tons	of	Megabytes	and	soon
Gigabytes.

When	a	coworker	clones	that	repository	to	her	local	machine,	she	will	need	to
download	a	huge	amount	of	data.	And,	as	already	mentioned,	most	of	this	data
will	be	of	little	value:	usually,	old	versions	of	files	aren't	used	on	a	daily	basis	-
but	they	still	weigh	a	lot	of	Megabytes...

The	LFS	extension	uses	a	simple	technique	to	avoid	your	local	Git	repository
from	exploding	like	that:	it	does	not	keep	all	versions	of	a	file	on	your
machine.	Instead,	it	only	provides	the	files	you	actually	need	in	your	checked
out	revision.	If	you	switch	branches,	it	will	automatically	check	if	you	need	a
specific	version	of	such	a	big	file	and	get	it	for	you	-	on	demand.

Pointers	Instead	of	Real	Data

But	what	exactly	is	stored	in	your	local	repository?	We	already	heard	that,	in

terms	of	actual	files,	only	those	items	are	present	that	are	actually	needed	in	the
currently	checked	out	revision.	But	what	about	the	other	versions	of	an	LFS-
managed	file?

To	do	its	size-reducing	wonders,	LFS	only	stores	pointers	to	these	files	in	the
repository.	These	pointers	are	just	references	to	the	actual	files	which	are	stored
elsewhere,	in	a	special	LFS	store.

An	Additional	Object	Store

The	usual	Git	setup	is	probably	old	hat	to	you:

Your	local	computer	is	home	to	a	local	Git	repository	and	the	project's
Working	Copy.

Most	likely	(although	not	mandatory)	there's	also	a	remote	server	involved
which	hosts	the	remote	repository.

With	LFS,	this	classic	setup	is	extended	by	an	LFS	cache	and	an	LFS	store:

Remember	that	an	LFS-tracked	file	is	only	saved	as	a	pointer	in	the
repository.	The	actual	file	data,	therefore,	has	to	be	located	somewhere	else:
in	the	LFS	cache	that	now	accompanies	your	local	Git	repository.

On	the	remote	side	of	things,	an	LFS	store	saves	and	delivers	all	of	those
large	files	on	demand.

Whenever	Git	in	your	local	repository	encounters	an	LFS-managed	file,	it	will
only	find	a	pointer	-	not	the	file's	actual	data.	It	will	then	ask	the	local	LFS
Cache	to	deliver	it.	The	LFS	Cache	tries	to	look	up	the	file	by	its	pointer;	if	it
doesn't	have	it	already,	it	requests	it	from	the	remote	LFS	Store.

That	way,	you	only	have	the	file	data	on	disk	that	is	necessary	for	you	at	the
moment.	Everything	else	will	be	downloaded	on	demand.

Before	we	get	our	hands	dirty	installing	and	actually	using	LFS	there's	one	last
thing	to	do:	please	check	if	your	code	hosting	service	of	choice	supports	LFS.
Although	most	popular	services	like	GitHub,	GitLab,	and	Visual	Studio	already
offer	support	for	LFS,	it's	nothing	to	take	for	granted.

Installing	Git	LFS

LFS	is	a	fairly	recent	invention	and	not	(yet)	part	of	the	core	Git	feature	set.	It's
provided	as	an	extension	that	you'll	have	to	install	once	on	your	local	machine.

Installation	is	quick	and	simple:

Linux:	Debian	and	RPM	packages	are	available	from	PackageCloud.

macOS:	You	can	either	use	Homebrew	via	"brew	install	git-lfs"	or
MacPorts	via	"port	install	git-lfs".

Windows:	Use	the	Chocolatey	package	manager	via	"choco	install	git-lfs".

To	finish	the	installation,	you	need	to	run	the	"install"	command	once	to
complete	the	initialization:

$	git	lfs	install

CONCEPT

Good	news	if	you're	using	the	Tower	desktop	GUI	all	recent	versions	of	the	app	already	include	LFS.

You	don't	have	to	install	anything	else!

Tracking	a	File	with	LFS

Out	of	the	box,	LFS	doesn't	do	anything	with	your	files:	you	have	to	explicitly
tell	it	which	files	it	should	track!

Let's	start	by	adding	a	large	file	to	the	repository,	e.g.	a	nice	100	MB	Photoshop
file:

https://packagecloud.io/github/git-lfs/install
https://github.com/Homebrew/brew
https://www.macports.org
https://chocolatey.org/
https://www.git-tower.com

With	the	"track"	command,	you	can	tell	LFS	to	take	care	of	the	file:

$	git	lfs	track	"design.psd"

If	you	expected	fireworks	to	go	off,	you'll	probably	be	a	bit	disappointed:	the
command	didn't	do	much.	But	you'll	notice	that	the	".gitattributes"	file	in	the
root	of	your	project	was	changed!	This	is	where	Git	LFS	remembers	which	files
it	should	track.

If	we	look	at	it	now,	we'll	be	happy	to	see	that	LFS	made	an	entry	about	our
"design.psd"	file:

design.psd	filter=lfs	diff=lfs	merge=lfs	-text

Just	like	the	".gitignore"	file	(responsible	for	ignoring	items),	the	".gitattributes"
file	and	any	changes	that	happen	to	it	should	be	included	in	version	control.	Put
simply,	you	should	commit	changes	to	".gitattributes"	to	the	repository	like	any
other	changes,	too:

$	git	add	.gitattributes

$	git	add	design.psd

$	git	commit	-m	"Add	design	file"

Tracking	Patterns

It	would	be	a	bit	tedious	if	you	had	to	manually	tell	LFS	about	every	single	file
you	want	to	track.	That's	why	you	can	feed	it	a	file	pattern	instead	of	the	path	of
a	particular	file.	As	an	example,	let's	tell	LFS	to	track	all	".mov"	files	in	our
repository:

git	lfs	track	"*.mov"

To	avoid	some	slippery	slopes,	keep	two	things	in	mind	when	creating	a	new
tracking	rule:

Don't	forget	the	quotes	around	the	file	pattern.	It	indeed	makes	a	difference
if	you	write	git	lfs	track	"*.mov"	or	git	lfs	track	*.mov.	In	the	latter	case,
the	command	line	will	expand	the	wildcard	and	create	individual	rules	for
all	.mov	files	in	your	project	-	which	you	probably	do	not	want!

Always	execute	the	"track"	command	from	the	root	of	your	project.	The
reason	for	this	advice	is	that	patterns	are	relative	to	the	folder	in	which	you
ran	the	command.	Keep	things	simple	and	always	use	it	from	the
repository's	root	folder.

Which	Files	Are	We	Tracking?

At	some	point,	you	might	want	to	check	which	files	in	your	project	you	are
effectively	tracking	via	Git	LFS.	This	is	where	the	"ls-files"	command	comes	in
handy:	it	lists	all	of	the	files	that	are	tracked	by	LFS	in	the	current	working	copy.

$	git	lfs	ls-files

3515fd8462	*	design.psd

Whenever	you're	in	doubt	if	a	certain	file	is	really	managed	by	LFS,	simply

assure	yourself	with	the	"ls-files"	command.

When	to	Track

You	can	accuse	Git	of	many	things	-	but	definitely	not	of	forgetfulness:	things
that	you've	committed	to	the	repository	are	there	to	stay.	It's	very	hard	to	get
things	out	of	a	project's	commit	history	(and	that's	a	good	thing).

In	the	end,	this	means	one	thing:	make	sure	to	set	your	LFS	tracking	patterns	as
early	as	possible	-	ideally	right	after	initializing	a	new	repository.	To	change	a
file	that	was	committed	the	usual	way	into	an	LFS-managed	object,	you	would
have	to	manipulate	and	rewrite	your	project's	history.	And	you	certainly	want	to
avoid	this.

Cloning	a	Git	LFS	Repository

To	clone	an	existing	LFS	repository	from	a	remote	server,	you	can	simply	use
the	standard	"git	clone"	command	that	you	already	know.	After	downloading	the
repository,	Git	will	check	out	the	default	branch	and	then	hand	over	to	LFS:	if
there	are	any	LFS-managed	files	in	the	current	revision,	they'll	be	automatically
downloaded	for	you.

That's	all	well	and	good	-	but	if	you	want	to	speed	up	the	cloning	process,	you
can	also	use	the	"git	lfs	clone"	command	instead.	The	main	difference	is	that,
after	the	initial	checkout	was	performed,	the	requested	LFS	items	are
downloaded	in	parallel	(instead	of	one	after	the	other).	This	could	be	a	nice	time
saver	for	repositories	with	lots	of	LFS-tracked	files.

Working	with	Your	Repository

Undeniably,	the	best	part	about	Git	LFS	is	that	it	doesn't	require	you	to	change
your	workflow.	Apart	from	telling	LFS	which	files	it	should	track,	there	is
nothing	to	watch	out	for!	No	matter	if	it's	committing,	pushing	or	pulling:	you
can	continue	to	work	with	the	commands	you	already	know	and	use.

Authentication	with	SSH	Public	Keys
Often,	access	to	a	remote	Git	repository	on	a	server	will	be	restricted:	you
probably	don‘t	want	to	allow	anybody	to	read	(or	at	least	not	write	to)	your	files.
In	these	cases,	some	kind	of	authentication	is	necessary.

One	possibility	to	authenticate	uses	the	“HTTPS”	protocol	which	you	probably
already	know	from	your	browser.	Although	this	is	very	easy	to	use,	a	lot	of
system	administrators	use	the	also	very	common	“SSH”	protocol	for	various
reasons.	In	this	scenario,	when	it	comes	to	authentication,	you	will	most	likely
meet	“SSH	Public	Keys”.

For	this	type	of	authentication,	a	two-part	key	is	used:	a	public	and	a	private	one.
The	private	key	(as	the	name	implies)	must	be	kept	absolutely	private	to	you
under	all	circumstances.	Its	public	counterpart,	in	contrast,	is	supposed	to	be
installed	on	all	servers	that	you	want	to	get	access	to.

When	a	connection	via	SSH	is	trying	to	be	established,	the	server	will	only	grant
access	if	it	has	a	public	key	installed	that	matches	the	private	key	of	the
requesting	computer.

Creating	a	Public	Key

Before	creating	a	public	key,	you	should	check	if	you	already	have	one:

$	ls	~/.ssh

If	a	file	named	“id_rsa.pub”	or	“id_dsa.pub”	is	listed,	you	already	have	a	key.
In	this	case,	you	are	good	to	give	this	file	to	your	server‘s	administrator	or	(in
case	you‘re	using	a	hosting	service	like	GitHub	or	Beanstalk)	upload	it	to	your
account.

Otherwise,	creating	a	key	is	just	a	matter	of	executing	a	single	command:

$	ssh-keygen	-t	rsa	-C	“john@example.com”

With	the	“-t”	flag,	we	demand	an	“RSA”	type	key,	which	is	one	of	the	newest
and	safest	types.	With	the	“-C”	flag,	we	provide	a	comment	which	you	can	think
of	as	a	kind	of	description	or	label	for	this	key.	Using	your	email	address,	e.g.,
lets	you	identify	it	more	easily	later.

After	confirming	this	command,	you‘ll	be	asked	to:

1.	 Enter	a	name	for	this	new	key.	Just	hit	RETURN	to	accept	the	default	name
and	location.

2.	 Provide	a	passphrase.	Although	SSH	public	key	authentication	can	be	used
safely	without	any	password,	you	should	nonetheless	enter	a	strong
passphrase	to	enhance	security	even	further.

$	ssh-keygen	-t	rsa	-C	“john@example.com”

Generating	public/private	rsa	key	pair.

Enter	file	in	which	to	save	the	key	(/Users/tobidobi/.ssh/id_rsa):

Enter	passphrase	(empty	for	no	passphrase):

Enter	same	passphrase	again:

Your	identification	has	been	saved	in	/Users/tobidobi/.ssh/id_rsa.

Your	public	key	has	been	saved	in	/Users/tobidobi/.ssh/id_rsa.pub.

The	key	fingerprint	is:

87:23:34:de:35:d0:f2:78:05:a4:78:1b:f1:6a:7e:be	john@example.com

The	key’s	randomart	image	is:

+--[RSA	2048]----+

|				.	=	o								|

|			..o..									|

|		.	o	S	.								|

|	.	.						.	o				|

|		.	+	+	.	o						|

|			.	S	=	+	o.				|

|				.	.	+	+	.	o		|

|							o	.							|

|														o	.|

|														.Eo|

+-----------------+

Now,	two	files	will	have	been	created	for	you:	“id_rsa.pub”	(your	public	key)
and	“id_rsa”	(your	private	key).	If	you‘re	on	a	Mac,	you‘ll	find	these	in	the
“.ssh”	folder	inside	your	home	directory	(~./ssh/).	On	Windows,	you	should	look
in	C:\Documents	and	Settings\your-username\.ssh\	or	C:\Users\your-
username\.ssh.

If	you	take	a	look	at	the	actual	contents	of	your	public	key	file,	you‘ll	see
something	like	this:

$	cat	~/.ssh/id_rsa.pub

ssh-rsa	AAAB3nZaC1aycAAEU+/ZdulUJoeuchOUU02/j18L7fo+ltQ0f322+Au/9yy

9oaABBRCrHN/yo88BC0AB3nZaC1aycAAEU+/ZdulUJoeuchOUU02/j18L7fo+ltQ0f3

22AB3nZaC1aycAAEU+/ZdulUJoeuchOUU02/j18L7fo+ltQ0f322AB3nZaC1aycAAEU

+/ZdulUJoeuchOUU02/j18L7fo+ltQ0f322AB3nZaC1aycAAEU+/ZdulUJoeuchOUU0

2/j18L7fo+ltQ0f322klCi0/aEBBc02N+JJP	john@example.com

It‘s	this	output	that	needs	to	be	installed	on	the	remote	server	you	want	to	get

access	to.	In	case	you	have	an	own	server	for	your	team,	you‘ll	give	this	to	your
server‘s	administrator.	In	case	you‘re	using	a	code	hosting	service	like	GitHub	or
Beanstalk,	you‘ll	have	to	upload	this	to	your	account.

You	have	to	copy	the	content	of	the	public	key	file	exactly	as	it	is	-	no
whitespace	or	the	like	is	accepted.	To	make	this	as	safe	and	easy	as	possible,	you
can	use	the	following	command	to	have	this	copied	to	your	clipboard:

$	pbcopy	<	~/.ssh/id_rsa.pub						[on	Mac]

$	clip	<	~/.ssh/id_rsa.pub								[on	Windows]

Desktop	GUIs
You‘ve	learned	quite	a	lot	of	Git	commands	in	the	course	of	this	book.	Although
this	is	indispensable	in	the	learning	process,	version	control	is	not	about	learning
all	of	the	commands	and	parameters	by	heart.

As	soon	as	you	have	a	basic	understanding,	switching	to	a	desktop	GUI
application	can	make	your	life	a	lot	easier.	Especially	the	fact	that	it	provides
you	with	a	visual	representation	of	everything	is	a	huge	help.

A	lot	of	tasks	can	be	performed	easier	and	more	comfortably	using	a	desktop
application.	Let	alone	not	having	to	memorize	dozens	of	commands	(including
their	syntax	and	parameters).

A	good	GUI	application	will	make	you	more	productive	and	give	you	the
confidence	to	use	all	of	Git‘s	advantages.

Tower	Git	Client

As	the	makers	of	Tower,	we'd	love	if	you	gave	it	a	try.	It's	popular	among	both
individual	software	developers	and	companies	like	Apple,	Google,	Amazon,
Ebay,	and	Twitter.

With	its	easy-to-use	interface,	the	application	focuses	on	taking	the	complexity
out	of	Git,	while	still	offering	all	of	the	advanced	features.

http://www.git-tower.com/?utm_source=learn-git-ebook&utm_medium=learn-git-ebook-pdf&utm_campaign=learn-git

The	“Status	View”	shows	you	which	files	you	modified,	how	you	modified
them,	and	which	files	are	staged	for	the	next	commit.

The	"History"	view	provides	a	perfect	overview	everything	there	is	to	know
about	a	certain	commit	-	including	e.g.	integrated	file	diff	information.

It’s	available	for	both	Mac	OS	and	Windows.	You	can	try	it	free	for	30	days:
http://www.git-tower.com

http://www.git-tower.com/?utm_source=learn-git-ebook&utm_medium=learn-git-ebook-pdf&utm_campaign=learn-git

Diff	&	Merge	Tools
To	understand	what	happened	in	a	project,	you	need	to	inspect	changes.	And
since	changes	are	represented	as	“diffs”,	it‘s	crucial	to	be	able	to	understand
these	diffs.

While	the	command	line	is	the	easiest	way	to	output	diff	data,	it	can‘t	go	very	far
in	making	it	easy	to	read:

$	git	diff

diff	--git	a/css/about.css	b/css/about.css

index	e69de29..4b5800f	100644

---	a/css/about.css

+++	b/css/about.css

@@	-0,0	+1,2	@@

+h1	{

+		line-height:30px;	}

\	No	newline	at	end	of	file

diff	--git	a/css/general.css	b/css/general.css

index	a3b8935..d472b7f	100644

---	a/css/general.css

+++	b/css/general.css

@@	-21,7	+21,8	@@	body	{

	h1,	h2,	h3,	h4,	h5	{

			color:#ffd84c;

-		font-family:	“Trebuchet	MS”,	“Trebuchet”;	}

+		font-family:	“Trebuchet	MS”,	“Trebuchet”;

+		margin-bottom:0px;	}

	p	{

			margin-bottom:6px;}

diff	--git	a/error.html	b/error.html

deleted	file	mode	100644

index	78alc33..0000000

---	a/error.html

+++	/dev/null

@@	-1,43	+0,0	@@

-	<html>

-	

-			<head>

-					<title>Tower	::	Imprint</title>

-					<link	rel=“shortcut	icon”	href=“img/favicon.ico”	/>

-					<link	type=“text/css”	href=“css/general.css”	/>

-			</head>

-

A	diff	tool	application,	in	contrast,	is	dedicated	to	just	this	single	job:	helping
you	understand	diffs	more	easily.	It	uses	colors,	special	formatting,	and	even
different	arrangements	(side-by-side,	combined	in	a	single	column,	etc.)	to
achieve	this:	

Some	of	these	tools	can	even	help	you	solve	merge	conflicts.	Especially	in	this
situation,	you‘ll	quickly	come	to	appreciate	a	tool	that	helps	reduce	complexity
and	avoid	mistakes.

Today,	there	are	lots	of	great	tools	on	the	market.	Below	is	a	short	list	to	give
you	an	overview.

Mac	OS	X

Kaleidoscope

Araxis	Merge

DeltaWalker

Windows

Beyond	Compare

Araxis	Merge

P4Merge

http://www.kaleidoscopeapp.com
http://www.araxis.com/merge
http://www.deltopia.com/compare-merge-sync/macosx
http://www.scootersoftware.com
http://www.araxis.com/merge
http://www.perforce.com/product/components/perforce-visual-merge-and-diff-tools

Code	Hosting	Services
Hosting	your	code	becomes	an	important	topic	as	soon	as	you	want	to	start
sharing	it	–	and	be	it	only	with	yourself	on	another	machine.	There	are	basically
two	different	flavors	of	code	hosting:	do-it-yourself	and	leave-me-in-peace.

(A)	Do-It-Yourself

Hosting	a	Git	repository	on	your	own	server	has	a	lot	of	advantages:

It	saves	money	you’d	have	to	spend	on	code	hosting	services.

It	keeps	your	code	in-house.

And	it	generally	gives	you	all	the	freedom	in	the	world.

But,	of	course,	this	also	comes	with	some	drawbacks:

YOU	are	responsible	for	ensuring	high	availability	/	up-time	of	the	server.

YOU	are	responsible	for	making	backups	(that	really,	really	work).

YOU	are	responsible	for	keeping	an	eye	on	security	and	software	updates.

In	the	end,	the	hard	part	about	hosting	code	is	not	the	management	of	the	Git
repositories.	It’s	the	management	and	maintenance	of	the	server.	Don’t	get	me
wrong:	the	bottom	line	is	NOT	“stop	hosting	code	yourself	and	use	a	code
hosting	service”.	The	bottom	line	is	“be	aware	of	what	hosting	your	code
yourself	really	means”.

If	you	have	enough	expertise	doing	this	yourself	and	if	you’re	willing	to	invest
the	time,	hosting	your	repositories	on	your	own	server	is	perfect	for	you!

(B)	Leave-Me-In-Peace

For	most	people,	their	core	competence	is	not	server	maintenance.	While	a	lot	of
people	_theoretically	have	the	knowledge_	to	do	it	themselves,	they‘re	often	not
proficient	enough	for	this	to	make	sense.

By	now,	there	are	dozens	of	specialized	service	providers	available	that	do	all
the	server	management,	backup,	and	security	stuff	for	you.	We‘ve	compiled	a
short	list	of	some	of	them	to	give	you	a	quick	overview.

GitHub	(www.github.com)

GitHub	is	the	most	popular	code	hosting	service	in	the	Git	world.	Especially	for
OpenSource	projects,	GitHub	is	the	go-to	platform.

Beanstalk	(www.beanstalkapp.com)

Beanstalk	offers	hosting	not	only	for	Git	repositories,	but	also	for	Subversion
projects.	Being	a	very	lean	and	reliable	service,	Beanstalk	is	a	great	choice	for
businesses.

Bitbucket	(www.bitbucket.com)

Besides	Git	repositories,	Bitbucket	also	offers	hosting	for	the	Mercurial	VCS.	It
has	a	similar	feature	set	as	the	GitHub	platform,	although	it‘s	not	as	popular	in
the	OpenSource	space.

Plan.io	(www.plan.io)

Plan.io	offers	a	complete	project	management	platform.	In	addition	to	code
hosting	(Git	and	Subversion),	it	also	provides	you	with	modules	for	task
management,	customer	helpdesk,	and	even	integrated	Wikis.

State	of	Play
Reaching	this	part	of	the	book	(assuming	that	you	haven‘t	started	reading	from
the	end...),	you	should	pat	yourself	on	the	back:	not	only	do	you	now	master	the
basics	of	version	control;	you	also	picked	Git,	one	of	the	most	promising
systems,	as	your	tool	of	choice.	My	sincerest	congratulations!

But	the	journey	doesn‘t	have	to	end	here.	You‘re	now	in	a	good	position	to	build
on	your	basic	knowledge	and	move	forward.

Learning	Resources
In	recent	years,	the	amount	of	documentation,	tutorials,	and	articles	on	Git	has
increased	a	lot,	fortunately.	I	recommend	you	have	a	look	at	the	following
resources:

“Git	-	the	Simple	Guide”

Cheat	Sheet

Video	Course

http://rogerdudler.github.io/git-guide/
https://www.git-tower.com/learn/cheat-sheets/git
https://www.git-tower.com/learn/git/videos

Appendix	A:	Version	Control	Best
Practices

Commit	Related	Changes

A	commit	should	be	a	wrapper	for	related	changes.	For	example,	fixing	two
different	bugs	should	produce	two	separate	commits.	Small	commits	make	it
easier	for	other	team	members	to	understand	the	changes	and	roll	them	back	if
something	went	wrong.	With	tools	like	the	staging	area	and	the	ability	to	stage
only	parts	of	a	file,	Git	makes	it	easy	to	create	very	granular	commits.

Commit	Often

Committing	often	keeps	your	commits	small	and,	again,	helps	you	commit	only
related	changes.	Moreover,	it	allows	you	to	share	your	code	more	frequently
with	others.	That	way	it’s	easier	for	everyone	to	integrate	changes	regularly	and
avoid	having	merge	conflicts.	Having	few	large	commits	and	sharing	them
rarely,	in	contrast,	makes	it	hard	both	to	solve	conflicts	and	to	comprehend	what
happened.

Don’t	Commit	Half-Done	Work

You	should	only	commit	code	when	it’s	completed.	This	doesn’t	mean	you	have
to	complete	a	whole,	large	feature	before	committing.	Quite	the	contrary:	split
the	feature’s	implementation	into	logical	chunks	and	remember	to	commit	early
and	often.	But	don’t	commit	just	to	have	something	in	the	repository	before
leaving	the	office	at	the	end	of	the	day.	If	you’re	tempted	to	commit	just	because
you	need	a	clean	working	copy	(to	check	out	a	branch,	pull	in	changes,	etc.)
consider	using	Git’s	“Stash”	feature	instead.

Test	Before	You	Commit

Resist	the	temptation	to	commit	something	that	you	“think”	is	completed.	Test	it
thoroughly	to	make	sure	it	really	is	completed	and	has	no	side	effects	(as	far	as
one	can	tell).	While	committing	half-baked	things	in	your	local	repository	only
requires	you	to	forgive	yourself,	having	your	code	tested	is	even	more	important
when	it	comes	to	pushing	/	sharing	your	code	with	others.

Write	Good	Commit	Messages

Begin	your	message	with	a	short	summary	of	your	changes	(up	to	50	characters
as	a	guideline).	Separate	it	from	the	following	body	by	including	a	blank	line.
The	body	of	your	message	should	provide	detailed	answers	to	the	following
questions:	What	was	the	motivation	for	the	change?	How	does	it	differ	from	the
previous	implementation?	Use	the	imperative,	present	tense	(“change”,	not
“changed”	or	“changes”)	to	be	consistent	with	generated	messages	from
commands	like	git	merge.

Version	Control	is	not	a	Backup	System

Having	your	files	backed	up	on	a	remote	server	is	a	nice	side	effect	of	having	a
version	control	system.	But	you	should	not	use	your	VCS	like	it	was	a	backup
system.	When	doing	version	control,	you	should	pay	attention	to	committing
semantically	(see	“related	changes”)	–	you	shouldn’t	just	cram	in	files.

Use	Branches

Branching	is	one	of	Git’s	most	powerful	features	–	and	this	is	not	by	accident:
quick	and	easy	branching	was	a	central	requirement	from	day	one.	Branches	are
the	perfect	tool	to	help	you	avoid	mixing	up	different	lines	of	development.	You

should	use	branches	extensively	in	your	development	workflows:	for	new
features,	bug	fixes,	experiments,	ideas…

Agree	on	a	Workflow

Git	lets	you	pick	from	a	lot	of	different	workflows:	long-running	branches,	topic
branches,	merge	or	rebase,	git-flow…	Which	one	you	choose	depends	on	a
couple	of	factors:	your	project,	your	overall	development	and	deployment
workflows	and	(maybe	most	importantly)	on	your	and	your	teammates’	personal
preferences.	However	you	choose	to	work,	just	make	sure	to	agree	on	a	common
workflow	that	everyone	follows.

Appendix	B:	Command	Line	101
For	many	non-technical	people,	the	command	line	(also	referred	to	as	CLI,
Terminal,	bash,	or	shell)	is	a	place	of	mystery.	However,	you	only	have	to	know
a	handful	of	basic	commands	to	start	feeling	comfortable.

Opening	Your	Command	Line	Interface

On	a	Mac,	the	most	common	application	for	command	line	gymnastics	is
“Terminal.app”.	It	comes	pre-installed	with	every	Mac	OS	X	system.	You‘ll	find
it	in	the	“Applications”	folder,	inside	the	“Utilities”	subfolder.

On	Windows,	following	the	installation	guidelines	earlier	in	this	book	will
provide	you	with	an	application	called	“Git	Bash”.	You‘ll	find	it	in	your
Windows	START	menu,	inside	the	“Git”	folder.

Finding	Your	Way	Around

As	the	name	already	implies,	the	command	line	is	used	to	execute	commands:
you	type	something	and	confirm	the	command	by	hitting	ENTER.	Most	of	these
commands	are	dependent	on	your	current	location	-	where	“location”	means	a
certain	directory	or	path	on	your	computer.

So,	let‘s	issue	our	first	command	to	find	out	where	we	currently	are:

$	pwd

You	can	easily	remember	this	command	when	you	know	what	it	stands	for:
“print	working	directory”.	It	will	return	the	path	to	a	local	folder	on	your
computer‘s	disk.

To	change	this	current	working	directory,	you	can	use	the	“cd”	command	(where
“cd”	stands	for	“change	directory”).	For	example,	to	move	one	directory
upwards	(into	the	current	folder‘s	parent	folder),	you	can	just	call:

$	cd	..

To	move	into	subfolders,	you	would	call	something	like	this:

$	cd	name-of-subfolder/sub-subfolder/

Often,	you‘ll	see	a	special	kind	of	path	notation:	“~”.	This	sign	stands	for	your
user	account‘s	home	folder.	So,	instead	of	typing	something	like	“cd
/Users/<your-username>/”,	you	should	use	this	shorthand	form:

$	cd	~/projects/

Also	very	important	is	the	“ls”	command	that	lists	the	file	contents	of	a	directory.
I	suggest	you	always	use	this	command	with	two	additional	options:	“-l”	formats
the	output	list	a	little	more	structured	and	“-a”	also	lists	“hidden”	files	(which	is
helpful	when	working	with	version	control).	Showing	the	contents	of	the	current
directory	works	as	follows:

$	ls	-la

Working	with	Files

The	most	important	file	operations	can	be	controlled	with	just	a	handful	of
commands.

Let’s	start	by	removing	a	file:

$	rm	path/to/file.ext

When	trying	to	delete	a	folder,	however,	please	note	that	you’ll	have	to	add	the
“-r”	flag	(which	stand	for	“recursive”):

$	rm	-r	path/to/folder

Moving	a	file	is	just	as	simple:

$	mv	path/to/file.ext	different/path/file.ext

The	“mv”	command	can	also	be	used	to	rename	a	file:

$	mv	old-filename.ext	new-filename.ext

If,	instead	of	moving	the	file,	you	want	to	copy	it,	simply	use	“cp”	instead	of
“mv”.

Finally,	to	create	a	new	folder,	you	call	the	“make	directory”	command:

$	mkdir	new-folder

Generating	Output

The	command	line	is	quite	an	all-rounder:	it	can	also	display	a	file’s	contents	-
although	it	won’t	do	this	as	elegantly	as	your	favorite	editor.	Nonetheless,	there
are	cases	where	it’s	handy	to	use	the	command	line	for	this.	For	example	when
you	only	want	to	take	a	quick	look	-	or	when	GUI	apps	are	simply	not	available
because	you’re	working	on	a	remote	server.

The	“cat”	command	outputs	the	whole	file	in	one	go:

$	cat	file.ext

In	a	similar	way,	the	“head”	command	displays	the	file’s	first	10	lines,	while

“tail”	shows	the	last	10	lines.	You	can	simply	scroll	up	and	down	in	the	output
like	you’re	used	to	from	other	applications.

The	“less”	command	is	a	little	different	in	this	regard.

$	less	file.ext

Although	it’s	also	used	to	display	output,	it	controls	page	flow	itself.	This	means
that	it	only	displays	one	page	full	of	content	and	then	waits	for	your	explicit
instructions.	You’ll	know	you	have	“less”	in	front	of	you	if	the	last	line	of	your
screen	either	shows	the	file’s	name	or	just	a	colon	(“:”)	that	waits	to	receive
orders	from	you.

Hitting	SPACE	will	scroll	one	page	forward,	“b”	will	scroll	one	page	backward,
and	“q”	will	simply	quit	the	“less”	program.

Making	Your	Life	Easier	on	the	Command	Line

There‘s	a	handful	of	little	tricks	that	make	your	life	a	lot	easier	while	working
with	the	command	line.

TAB	Key

Whenever	you‘re	entering	file	names	(including	paths	to	a	file	or	directory),	the
TAB	key	comes	in	very	handy.	It	autocompletes	what	you‘ve	written,	which
reduces	typos	very	efficiently.	For	example,	when	you	want	to	switch	to	a
different	directory,	you	can	either	type	every	component	of	the	path	yourself:

$	cd	~/projects/acmedesign/documentation/

Or	you	make	use	of	the	TAB	key	(try	this	yourself!):

$	cd	~/pr[TAB]ojects/ac[TAB]medesign/doc[TAB]umentation/

In	case	your	typed	characters	are	ambiguous	(because	“dev”	could	be	the
“development”	or	the	“developers”	folder...),	the	command	line	won‘t	be	able	to
autocomplete.	In	that	case,	you	can	hit	TAB	another	time	to	get	all	the	possible
matches	shown	and	can	then	type	a	few	more	characters.

ARROW	Keys

The	command	line	keeps	a	history	of	the	most	recent	commands	you	executed.
By	pressing	the	ARROW	UP	key,	you	can	step	through	the	last	commands	you
called	(starting	with	the	most	recently	used).	ARROW	DOWN	will	move
forward	in	history	towards	the	most	recent	call.

CTRL	Key

When	entering	commands,	pressing	CTRL+A	moves	the	caret	to	the	beginning
of	the	line,	while	CTRL+E	moves	it	to	the	end	of	the	line.

Finally,	not	all	commands	are	finished	by	simply	submitting	them:	some	require
further	inputs	from	you	after	hitting	return.	In	case	you	should	ever	be	stuck	in
the	middle	of	a	command	and	want	to	abort	it,	hitting	CTRL+C	will	cancel	that
command.	While	this	is	safe	to	do	in	most	situations,	please	note	that	aborting	a
command	can	of	course	leave	things	in	an	unsteady	state.

Appendix	C:	Switching	from
Subversion	to	Git
Actually,	switching	from	Subversion	to	Git	isn’t	very	complicated	-	but	only	if
you	don’t	treat	Git	like	a	fancier	Subversion.	Once	you	understand	where	the
concepts	differ,	the	transition	becomes	easy.

Distributed	vs.	Centralized

Subversion	is	a	centralized	version	control	system:	all	team	members	work
towards	a	single	central	repository,	placed	on	a	remote	server.	A	“checkout”
from	this	central	repository	will	place	a	“working	copy”	on	the	user’s	machine.
This	is	a	snapshot	from	a	certain	version	of	the	project	on	his	disk.

In	Git,	a	distributed	version	control	system,	things	work	a	little	differently.
Instead	of	a	“checkout”,	a	Git	user	will	“clone”	a	repository	from	a	remote
server.	In	return,	he	receives	a	full-fledged	repository,	not	just	a	working	copy.
The	user	then	has	his	own	repository	on	his	local	machine	-	including	all	of	the
project’s	history.

You	can	do	everything	on	your	local	machine:	commit,	inspect	history,	restore

older	revisions,	etc.	Only	if	you	want	to	share	your	work	with	the	world	you
have	to	connect	to	a	remote	server.

Repository	Structure	and	URLs

A	Subversion	repository	is	typically	organized	with	a	couple	of	directories:
“trunk”	for	the	main	line	of	development,	“branches”	for	alternative	contexts,
and	“tags”	to	mark	certain	revisions.	To	address	these	different	parts,	URLs	are
used	that	point	to	these	locations	inside	the	repository:

svn+ssh://svn@example.com/svn/trunk

Git	repositories,	on	the	other	hand,	consist	of	only	a	single	“.git”	folder	in	the
root	of	a	project.	Addressing	branches	or	tags	is	done	via	commands,	not	URLs.
In	Git,	the	URL	only	points	to	the	location	of	the	Git	repository.

ssh://git@example.com/path/to/git-repo.git

Branching

As	just	mentioned,	branches	in	Subversion	are	just	simple	directories	that
happen	to	have	a	special	meaning.	When	creating	a	new	branch,	you	effectively
create	a	(very	efficient)	copy	of	your	project	in	a	new	folder.

In	Git,	branching	was	one	of	the	core	design	goals	and	therefore	required	a	quite
different	concept.	A	branch	in	Git	is	simply	a	pointer	to	a	certain	revision	-
thereby	creating	no	copy,	no	new	directories,	and	no	overhead.You	are	always
working	on	a	branch	in	Git,	even	if	it’s	just	the	default	“master”	branch	that	gets
created	automatically.	Your	working	directory	contains	the	files	that	belong	to
this	currently	active	branch	(in	Git	called	the	“HEAD”).	All	other	versions	and
branches	are	stored	in	your	local	repository,	ready	to	be	restored	in	an	instant.

Also	keep	in	mind	the	distributed	nature	of	Git:	branches	can	exist	remotely	and
-	much	more	important	for	your	daily	work	-	locally.

Committing

When	making	a	commit	in	Subversion,	a	couple	of	rules	apply:

You	can	only	commit	when	you	have	a	connection	to	the	central	repository.
You	can’t	commit	while	you’re	offline.

The	commit	gets	instantly	transferred	to	the	central	repository.

It	gets	assigned	an	ascending	revision	number.

Committing	in	Git	differs	in	some	aspects:

You	don’t	have	to	be	online	or	connected	to	any	“central”	repository	-
because	you	have	a	full-blown	repository	on	your	local	disk.	Therefore,
commits	are	recorded	only	in	your	local	repository.	They’re	not	transferred
to	any	remote	repository	until	you	explicitly	decide	to	share	them.

Only	because	a	file	was	changed	doesn’t	mean	it	will	automatically	be
included	in	the	next	commit.	You	have	to	explicitly	mark	the	changes	you
want	in	the	next	commit	by	adding	them	to	the	so-called	“Staging	Area”.
You	can	even	mark	parts	or	individual	lines	of	a	file	to	be	included,	while
other	parts	are	left	for	a	later	commit.

Revision	numbers	are	replaced	by	“commit	hashes”.	Since	commits	happen
offline	on	the	developers’	local	machines,	you	cannot	assign	one	commit	#5
and	another	one	#6	-	who’s	first	in	such	a	distributed	scenario?	However,	of
course,	there	must	still	be	a	way	to	uniquely	identify	commits	in	Git.
Therefore,	a	hashed	string	is	used	instead	of	the	ascending	revision	number.

Sharing	Work

With	Subversion,	your	work	is	automatically	transferred	to	the	central	server
when	you	commit.	And	committing	is	only	possible	when	you	can	connect	to
this	central	server.

In	Git,	nothing	gets	uploaded	automatically.	You	can	decide	for	each	of	your
branches	when	(and	if	at	all)	you	want	to	share	them	with	your	team.	Besides
that,	sharing	work	is	very	safe:	conflicts	can	only	occur	on	your	local	machine
and	not	on	the	remote	server.	This	leaves	you	with	the	confidence	that	you
cannot	break	things.

Appendix	D:	Why	Git?
Although	there	are	dozens	of	version	control	systems	on	the	market,	some	of	the
world‘s	most	renowned	projects	(like	the	Linux	Kernel,	Ruby	on	Rails,	or
jQuery)	are	using	Git	as	their	VCS	of	choice.	Here	are	some	of	the	reasons	why.

Save	Time

Git	is	lightning	fast.	And	although	we‘re	talking	about	only	a	few	seconds	per
command,	it	quickly	adds	up	in	your	work	day.	Use	your	time	for	something
more	useful	than	waiting	for	your	version	control	system	to	get	back	to	you.

Work	Offline

What	if	you	want	to	work	while	you‘re	on	the	move?	With	a	centralized	VCS
like	Subversion	or	CVS,	you‘re	stranded	if	you‘re	not	connected	to	the	central
repository.	With	Git,	almost	everything	is	possible	simply	on	your	local
machine:	make	a	commit,	browse	your	project‘s	complete	history,	merge	or
create	branches...	Git	let‘s	you	decide	where	and	when	you	want	to	work.

Undo	Mistakes

People	make	mistakes.	A	good	thing	about	Git	is	that	there‘s	a	little	“undo”
command	for	almost	every	situation.	Correct	your	last	commit	because	you
forgot	to	include	that	small	change.	Revert	a	whole	commit	because	that	feature
isn‘t	necessary,	anymore.	And	when	the	going	gets	tough	you	can	even	restore
disappeared	commits	with	the	Reflog	-	because,	behind	the	scenes,	Git	rarely
really	deletes	something.	This	is	peace	of	mind.

Don‘t	Worry

Git	gives	you	the	confidence	that	you	can‘t	screw	things	up	-	and	this	is	a	great
feeling.	In	Git,	every	clone	of	a	project	that	one	of	your	teammates	might	have
on	his	local	computer	is	a	fully	usable	backup.	Additionally,	almost	every	action
in	Git	only	adds	data	(deleting	is	very	rare).	That	means	that	losing	data	or
breaking	a	repository	beyond	repair	is	really	hard	to	do.

Make	Useful	Commits

A	commit	is	only	really	useful	if	it	just	contains	related	changes.	Imagine	having
a	commit	that	contains	something	from	feature	A,	a	little	bit	of	feature	B,	and
bugfix	C.	This	is	hard	to	understand	for	your	teammates	and	can‘t	be	rolled	back
easily	if	some	of	the	code	is	causing	problems.	Git	helps	you	create	granular
commits	with	its	unique	“staging	area”	concept:	you	can	determine	exactly
which	changes	shall	be	included	in	your	next	commits,	even	down	to	single
lines.	This	is	where	version	control	starts	to	be	useful.

Work	in	Your	Own	Way

When	working	with	Git	you	can	use	your	very	own	workflow.	One	that	feels
good	for	you.	You	don’t	have	to	be	a	code	acrobat	to	qualify	for	using	Git.	Of
course,	you	can	connect	with	multiple	remote	repositories,	rebase	instead	of
merge,	and	work	with	submodules	when	you	need	it.	But	you	can	just	as	easily
work	with	one	central	remote	repository	like	in	Subversion.	All	the	other
advantages	remain	–	regardless	of	your	workflow.

Don’t	Mix	Things	Up

Separation	of	concerns	is	paramount	to	keeping	track	of	things.	While	you’re

working	on	feature	A,	nothing	(and	no-one)	else	should	be	affected	by	your
unfinished	code.	What	if	it	turns	out	the	feature	isn’t	necessary	anymore?	Or	if,
after	10	commits,	you	notice	that	you	took	a	completely	wrong	approach?
Branching	is	the	answer	for	these	problems.	And	while	other	version	control
systems	also	know	branches,	Git	is	the	first	one	to	make	it	work	as	it	should:	fast
&	easy.

Go	With	the	Flow

Only	dead	fish	swim	with	the	stream.	And	sometimes,	clever	developers	do,	too.
Git	is	used	by	more	and	more	well-known	companies	and	Open	Source	projects:
Ruby	On	Rails,	jQuery,	Perl,	Debian,	the	Linux	Kernel	and	many	more.	A	large
community	often	is	an	advantage	by	itself	because	an	ecosystem	evolves	around
the	system.	Lots	of	tutorials,	tools,	and	services	make	Git	even	more	attractive.

Tower	is	the	desktop	client	that	helps	over	35,000	users	in	companies	like	Apple,	Google,	Amazon,	Twitter,

and	Ebay	get	the	most	out	of	Git.

Download	it	today	and	try	it	free	for	30	days!

www.git-tower.com

http://www.git-tower.com/?utm_source=learn-git&utm_medium=ebook&utm_campaign=learn-git

	Table of Contents
	Introduction
	About Being Professional
	About This Book
	About the Author

	The Basics
	What is Version Control?
	Why Use a Version Control System?
	Getting Ready
	Setting Up Git on Your Computer
	The Basic Workflow of Version Control
	Starting with an Unversioned, Local Project
	Starting with an Existing Project on a Server
	Working on Your Project

	Branching & Merging
	Branching can Change Your Life
	Working in Contexts
	Working with Branches
	Saving Changes Temporarily
	Checking Out a Local Branch
	Merging Changes
	Branching Workflows

	Remote Repositories
	What a Remote Repository Is
	Local / Remote Workflow
	Connecting a Remote Repository
	Inspecting Remote Data
	Integrating Remote Changes
	Publishing a Local Branch
	Deleting Branches

	Advanced Topics
	Undoing Things
	Undoing Local Changes
	Inspecting Changes in Detail with Diffs
	Dealing with Merge Conflicts
	Rebase as an Alternative to Merge
	Submodules
	Workflows with git-flow
	Handling Large Files with LFS
	Authentication with SSH Public Keys

	Tools & Services
	Desktop GUIs
	Diff & Merge Tools
	Code Hosting Services

	Closing Thoughts
	State of Play

	Appendix
	Appendix A: Version Control Best Practices
	Appendix B: Command Line 101
	Appendix C: Switching from Subversion to Git
	Appendix D: Why Git?

