
3/31/2016

1

1

Design and implement a simple unit permitting to
speed up encryption with RC5-similar cipher with
fixed key set on 8031 microcontroller. Unlike in
the experiment 5, this time your unit has to be able
to perform an encryption algorithm by itself,
executing 32 rounds…..

Library IEEE;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity RC5_core is
port(

clock, reset, encr_decr: in std_logic;
data_input: in std_logic_vector(31 downto 0);
data_output: out std_logic_vector(31 downto 0);
out_full: in std_logic;
key_input: in std_logic_vector(31 downto 0);
key_read: out std_logic;

);
end AES_core;

Specification / Pseudocode

VHDL description (Your Source Files)
Functional simulation

Post-synthesis simulation
Synthesis

On-paper hardware design
(Block diagram & ASM chart)

2

3/31/2016

2

Implementation

Configuration

Timing simulation

On chip testing

3

Xilinx XSTXilinx XST

DesignDesign

SynthesisSynthesis

ImplementationImplementation
Xilinx ISEXilinx ISE

VHDL code

Netlist

Bitstream

Synplify PremierSynplify Premier

Functionally
verified

VHDL code

4

3/31/2016

3

… and others

Synplify PremierXilinx XST

5

architecture MLU_DATAFLOW of MLU is

signal A1:STD_LOGIC;
signal B1:STD_LOGIC;
signal Y1:STD_LOGIC;
signal MUX_0, MUX_1, MUX_2, MUX_3: STD_LOGIC;

begin
A1<=A when (NEG_A='0') else

not A;
B1<=B when (NEG_B='0') else

not B;
Y<=Y1 when (NEG_Y='0') else

not Y1;

MUX_0<=A1 and B1;
MUX_1<=A1 or B1;
MUX_2<=A1 xor B1;
MUX_3<=A1 xnor B1;

with (L1 & L0) select
Y1<=MUX_0 when "00",

MUX_1 when "01",
MUX_2 when "10",
MUX_3 when others;

end MLU_DATAFLOW;

VHDL description Circuit netlist

Logic Synthesis

6

3/31/2016

4

7

LUT2

LUT3

LUT4

LUT5

LUT1
FF1

FF2

LUT0

8

3/31/2016

5

LUT2

LUT3

LUT4

LUT5

LUT1
FF1

FF2

LUT0

9

CLB SLICES

FPGA

10

3/31/2016

6

Programmable Connections

FPGA

11

12

3/31/2016

7

 After synthesis the entire implementation process
is performed by FPGA vendor tools

13

14

3/31/2016

8

Translation

UCF

NGD Native Generic Database file

Constraint Editor
or Text Editor

User Constraint File

Circuit
Netlist

Timing
Constraints

Synthesis

15

 Once a design is implemented, you must create a file
that the FPGA can understand
◦ This file is called a bit stream: a BIT file (.bit extension)

 The BIT file can be downloaded directly to the
FPGA, or can be converted into a PROM file which
stores the programming information

16

3/31/2016

9

Synthesis

Technology
independent

Technology
dependent

Implementation

RTL
Synthesis

Map Place & Route Configure

- Code analysis
- Derivation of main logic
constructions
- Technology independent
optimization
- Creation of “RTL View”

- Mapping of extracted logic
structures to device primitives
- Technology dependent
optimization
- Application of “synthesis
constraints”
-Netlist generation
- Creation of “Technology View”

- Placement of generated
netlist onto the device
-Choosing best interconnect
structure for the placed
design
-Application of “physical
constraints”

- Bitstream
generation
- Burning device

17

18

 What is VHDL?
 Very High Speed Integrated Circuit (VHSIC)
 Hardware
 Description
 Language

 VHDL: a formal language for specifying the behavior
and structure of a digital circuit.

 Verilog: another, equally popular, hardware description
language (HDL).

3/31/2016

10

19

 VHDL is case insensitive

 Naming and Labeling
 All names should start with a letter

 Should contain only alphanumeric characters, and the
underscore; no other characters allowed

 Should not have two consecutive underscores
 Should not end with an underscore

 All names and labels in a given entity and architecture
must be unique

20

 Free format language
 i.e. allows spacing for readability

 Comments start with “--” and end at end of line

 Use one file per entity

 File names and entity names should match

3/31/2016

11

21

 VHDL description includes two parts
 Entity statement
 Architecture statement

 Entity
 Describes the interface (i.e. inputs and outputs)

 Architecture
 Describes the circuit implementation

a b z
0 0 1
0 1 1
1 0 1
1 1 0

a

b
z

22

3/31/2016

12

 3 sections to a piece of VHDL code
 File extension for a VHDL file is .vhd
 Name of the file should be the same as the entity name

(nand_gate.vhd) [OpenCores Coding Guidelines]

LIBRARY DECLARATION

ENTITY DECLARATION

ARCHITECTURE BODY

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY nand_gate IS
PORT(

a : IN STD_LOGIC;
b : IN STD_LOGIC;
z : OUT STD_LOGIC);

END nand_gate;

ARCHITECTURE model OF nand_gate IS
BEGIN

z <= a NAND b;
END model;

23

24

3/31/2016

13

ENTITY nand_gate IS
PORT(

a : IN STD_LOGIC;
b : IN STD_LOGIC;
z : OUT STD_LOGIC

);
END nand_gate;

Reserved words

Entity name Port names Port type
Semicolon

No Semicolon
after last port

Port modes (data flow directions)

 Entity Declaration describes the interface of
the component, i.e. input and output ports.

25

ENTITY entity_name IS
PORT (

port_name : port_mode signal_type;
port_name : port_mode signal_type;
………….
port_name : port_mode signal_type);

END entity_name;

26

3/31/2016

14

27

 IN
 Driver outside entity; can be read

 OUT
 Driver inside entity; cannot be read

 INOUT
 Driver inside and outside entity; can be read

 BUFFER
 Driver inside entity; can be read

The Port Mode of the interface describes the direction in which
data travels with respect to the component

◦ In: Data comes into this port and can only be read within the
entity. It can appear only on the right side of a signal or
variable assignment.

◦ Out: The value of an output port can only be updated within
the entity. It cannot be read. It can only appear on the left
side of a signal assignment.

◦ Inout: The value of a bi-directional port can be read and
updated within the entity model. It can appear on both sides
of a signal assignment.

28

3/31/2016

15

bit
boolean
integer
natural
positive
character

29

std_ulogic
std_logic
bit_vector
string
std_ulogic_vector
std_logic_vector

There are other data types, including enumerated types.

30

 Keyword: Architecture
 Requires a name

 The model is typically chosen as the name

 References the name of the associated Entity

 Specifies the functionality of the Entity
 Using one of several models

 Multiple architectures can be associated with a single
entity

 Only one architecture may be referenced

3/31/2016

16

31

Associated with each entity is one or more architecture
declarations of the form

architecture architecture-name of entity-name is
[declarations]

begin
architecture body

end [architecture] [architecture-name];

In the declarations section, we can declare signals and
components that are used within the architecture. The architecture
body contains statements that describe the operation of the
module.

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY nand_gate IS
PORT(

a : IN STD_LOGIC;
b : IN STD_LOGIC;
z : OUT STD_LOGIC);

END nand_gate;

ARCHITECTURE dataflow OF nand_gate IS
BEGIN

z <= a NAND b;
END dataflow;

nand_gate.vhd

32

3/31/2016

17

33

 Can be wires or buses (groups of wires)
 Wire

 SIGNAL a: STD_LOGIC;
 Bus (with 8 wires)

 SIGNAL b8: STD_LOGIC_VECTOR(7 DOWNTO 0);
 Bus (with 16 wires)

 SIGNAL b16: STD_LOGIC_VECTOR(15 DOWNTO 0);
 Used to interconnect entities and components

SIGNAL a : STD_LOGIC;

SIGNAL b : STD_LOGIC_VECTOR(7 DOWNTO 0);
wire

a

bus

b

1

8

34

3/31/2016

18

SIGNAL a: STD_LOGIC;
SIGNAL b: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL c: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL d: STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL e: STD_LOGIC_VECTOR(8 DOWNTO 0);

……….
a <= ‘1’;
b <= ”0000”; -- Binary base assumed by
default
c <= B”0000”; -- Binary base explicitly specified
d <= X”AF67”; -- Hexadecimal base
e <= O”723”; -- Octal base

35

SIGNAL a: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL b: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL c, d, e: STD_LOGIC_VECTOR(7 DOWNTO 0);

a <= ”0000”;
b <= ”1111”;
c <= a & b; -- c = ”00001111”

d <= ‘0’ & ”0001111”; -- d <= ”00001111”

e <= ‘0’ & ‘0’ & ‘0’ & ‘0’ & ‘1’ & ‘1’ &
‘1’ & ‘1’;

-- e <= ”00001111”

36

3/31/2016

19

37

When parentheses are not used, operators in class 7
have the highest precedence and are applied first,
followed by class 6, then class 5, etc.

Use all definitions from the package
std_logic_1164

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY nand_gate IS
PORT(

a : IN STD_LOGIC;
b : IN STD_LOGIC;
z : OUT STD_LOGIC);

END nand_gate;

ARCHITECTURE model OF nand_gate IS
BEGIN

z <= a NAND b;
END model;

Library declaration

38

3/31/2016

20

LIBRARY library_name;
USE library_name.package_name.package_parts;

39

LIBRARY

PACKAGE 1 PACKAGE 2

TYPES
CONSTANTS
FUNCTIONS
PROCEDURES
COMPONENTS

TYPES
CONSTANTS
FUNCTIONS
PROCEDURES
COMPONENTS

40

3/31/2016

21

 ieee

 std

 work

Need to be explicitly
declared

Visible by default

Specifies multi-level logic system,
including STD_LOGIC, and
STD_LOGIC_VECTOR data types

Specifies pre-defined data types
(BIT, BOOLEAN, INTEGER, REAL,
SIGNED, UNSIGNED, etc.), arithmetic
operations, basic type conversion
functions, basic text i/o functions, etc.

Holds current designs after compilation
41

What is STD_LOGIC you ask?

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY nand_gate IS
PORT(

a : IN STD_LOGIC;
b : IN STD_LOGIC;
z : OUT STD_LOGIC);

END nand_gate;

ARCHITECTURE dataflow OF nand_gate IS
BEGIN

z <= a NAND b;
END dataflow;

42

3/31/2016

22

 BIT type can only have a value of ‘0’ or ‘1’
 STD_LOGIC can have nine values

◦ ’U’,’X’,‘0’,’1’,’Z’,’W’,’L’,’H’,’-’
◦ Useful mainly for simulation
◦ ‘0’,’1’, and ‘Z’ are synthesizable

(your codes should contain only these
three values)

43

Value Meaning

‘U’ Uninitialized

‘X’ Forcing (Strong driven) Unknown

‘0’ Forcing (Strong driven) 0

‘1’ Forcing (Strong driven) 1

‘Z’ High Impedance

‘W’ Weak (Weakly driven) Unknown

‘L’ Weak (Weakly driven) 0.
Models a pull down.

‘H’ Weak (Weakly driven) 1.
Models a pull up.

‘-’ Don't Care

3/31/2016

23

45

F

A

B

C

B
C

A
B

A

C

Entity

Architecture

46

3/31/2016

24

Types of VHDL Description
(Modeling Styles)

47

Components and
interconnects

structural

VHDL Descriptions

dataflow

Concurrent
statements

behavioral

• Registers
• State machines
• Decoders

Sequential statements

Subset most suitable for synthesis

• Testbenches

48

3/31/2016

25

Components
& interconnects

Structural

VHDL Descriptions

dataflow

Concurrent
statements

algorithmic

Sequential
statements

Behavioral

49

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY xor3_gate IS
PORT(

A : IN STD_LOGIC;
B : IN STD_LOGIC;
C : IN STD_LOGIC;
Result : OUT STD_LOGIC

);
end xor3_gate;

50

3/31/2016

26

ARCHITECTURE dataflow OF xor3_gate IS
SIGNAL U1_OUT: STD_LOGIC;
BEGIN

U1_OUT <= A XOR B;
Result <= U1_OUT XOR C;

END dataflow;

U1_OUT

 Describes how data moves through the system and the various processing
steps.
◦ Dataflow uses series of concurrent statements to realize logic.
◦ Dataflow is the most useful style to describe combinational logic
◦ Dataflow code also called “concurrent” code

 Concurrent statements are evaluated at the same time; thus, the order of
these statements doesn’t matter
◦ This is not true for sequential/behavioral statements

This order…
U1_out <= A XOR B;

Result <= U1_out XOR C;

Is the same as this order…
Result <= U1_out XOR C;

U1_out <= A XOR B;

52

3/31/2016

27

A
B
C

Resultxor3_gate

I1
I2

Y I1
I2

Y

U1_OUT

PORT NAME

LOCAL WIRE NAME

ARCHITECTURE structural OF xor3_gate
IS

SIGNAL U1_OUT: STD_LOGIC;

BEGIN
U1: entity work.xor2(dataflow)

PORT MAP (I1 => A,
I2 => B,

Y => U1_OUT);

U2: entity work.xor2(dataflow)
PORT MAP (I1 => U1_OUT,

I2 => C,
Y => Result);

END structural;

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY xor2 IS
PORT(

I1 : IN STD_LOGIC;
I2 : IN STD_LOGIC;
Y : OUT STD_LOGIC);

END xor2;

ARCHITECTURE dataflow OF xor2 IS
BEGIN

Y <= I1 xor I2;
END dataflow;

xor2.vhd

54

3/31/2016

28

 Structural design is the simplest to understand. This style is
the closest to schematic capture and utilizes simple building
blocks to compose logic functions.

 Components are interconnected in a hierarchical manner.

 Structural descriptions may connect simple gates or complex,
abstract components.

 Structural style is useful when expressing a design that is
naturally composed of sub-blocks.

55

ARCHITECTURE behavioral OF xor3 IS

BEGIN
xor3_behave: PROCESS (A, B, C)

BEGIN
IF ((A XOR B XOR C) = '1') THEN

Result <= '1';
ELSE

Result <= '0';
END IF;

END PROCESS xor3_behave;

END behavioral;

56

3/31/2016

29

 It accurately models what happens on the inputs and
outputs of the black box (no matter what is inside and
how it works).

 This style uses PROCESS statements in VHDL.

57

