
1

1

Design of Controllers

Finite State Machines

2ECE 448 – FPGA and ASIC Design with VHDL

Datapath
vs.

Controller

2

Structure of a Typical Digital
System

Datapath
(Execution

Unit)

Controller
(Control

Unit)

Data Inputs

Data Outputs

Control & Status Inputs

Control & Status Outputs

Control
Signals

Status
Signals

4

Datapath (Execution Unit)
• Manipulates and processes data
• Performs arithmetic and logic operations,

shifting/rotating, and other data-processing
tasks

• Is composed of registers, multiplexers, adders,
decoders, comparators, ALUs, gates, etc.

• Provides all necessary resources and
interconnects among them to perform specified
task

• Interprets control signals from the Controller
and generates status signals for the Controller

3

5

Controller (Control Unit)

• Controls data movements in the Datapath by
switching multiplexers and enabling or disabling
resources

Example: enable signals for registers
Example: select signals for muxes

• Provides signals to activate various processing
tasks in the Datapath

• Determines the sequence of operations
performed by the Datapath

• Follows Some ‘Program’ or Schedule

6

Finite State Machines
• Digital Systems and especially their Controllers

can be described as Finite State Machines
(FSMs)

• Finite State Machines can be represented using
• State Diagrams and State Tables - suitable

for simple digital systems with a relatively few
inputs and outputs

• Algorithmic State Machine (ASM) Charts -
suitable for complex digital systems with a
large number of inputs and outputs

• All these descriptions can be easily translated to
the corresponding synthesizable VHDL code

4

Hardware Design with RTL VHDL

Pseudocode

Datapath Controller

Block
diagram

Block
diagram

State diagram
or ASM chart

VHDL code VHDL code VHDL code

Interface

Steps of the Design Process
1. Text description
2. Interface
3. Pseudocode
4. Block diagram of the Datapath
5. Interface with the division into Datapath

and Controller
6. ASM chart of the Controller
7. RTL VHDL code of the Datapath, Controller, and

Top-Level Unit
8. Testbench of the Datapath, Controller, and

Top-Level Unit
9. Functional simulation and debugging
10. Synthesis and post-synthesis simulation
11. Implementation and timing simulation
12. Experimental testing

5

9ECE 448 – FPGA and ASIC Design with VHDL

Finite State Machines
Refresher

10

Finite State Machines (FSMs)
• An FSM is used to model a system that transits

among a finite number of internal states. The
transitions depend on the current state and external
input.

• The main application of an FSM is to act as the
controller of a medium to large digital system

• Design of FSMs involves
• Defining states
• Defining next state and output functions
• Optimization / minimization

• Manual optimization/minimization is practical for
small FSMs only

6

11

Synchronous
Outputs change when
the state changes on

the clock edge.

Synchronous
Outputs change when
the state changes on

the clock edge.

Asynchronous
Outputs change when the

input changes.
The state changes on the

next clock edge.

Inputs/Outputs written on the
arcs in the State Diagram.

Asynchronous
Outputs change when the

input changes.
The state changes on the

next clock edge.

Inputs/Outputs written on the
arcs in the State Diagram.

Moore vs. Mealy Machines
Two Types of Sequential NetsTwo Types of Sequential Nets

Does the output depend only on
the current state or does it also
directly depend on the input?

Does the output depend only on
the current state or does it also
directly depend on the input?

Only the current
state  Moore

Also the current
inputs  Mealy

12

State-machine structure (Moore)

output depends
on state only

typically edge-triggered
D flip-flops

Learn this diagram!

7

13

State-machine structure (Mealy)

typically edge-triggered
DFFs

output depends directly
both on state and input

14

Moore FSM
• Output Is a Function of a Present State Only

Present State
register

Next State
function

Output
function

Inputs

Present StateNext State

Outputs

clock
reset

8

15

Mealy FSM
• Output Is a Function of a Present State and

Inputs

Next State
function

Output
function

Inputs

Present StateNext State

Outputs

Present State
register

clock
reset

16ECE 448 – FPGA and ASIC Design with VHDL

State Diagrams

9

17

Moore Machine

state 1 /
output 1

state 2 /
output 2

transition
condition 1

transition
condition 2

18

Mealy Machine

state 1 state 2

transition condition 1 /
output 1

transition condition 2 /
output 2

10

19

Moore FSM - Example 1

• Moore FSM that Recognizes Sequence “10”

S0 / 0 S1 / 0 S2 / 1

0
0

0

1

1
1

reset

Meaning
of states:

S0: No
elements
of the
sequence
observed

S1: “1”
observed

S2: “10”
observed

20

Mealy FSM - Example 1

• Mealy FSM that Recognizes Sequence
“10”

S0 S1

0 / 0 1 / 0 1 / 0

0 / 1reset

Meaning
of states:

S0: No
elements
of the
sequence
observed

S1: “1”
observed

11

21

Moore & Mealy FSMs – Example 1

clock

input

Moore

Mealy

0 1 0 0 0

S0 S0 S1 S2 S0 S0

S0 S0 S1 S0 S0 S0

state

output

state

output

22

Moore vs. Mealy FSM (1)

• Moore and Mealy FSMs Can Be
Functionally Equivalent
• Equivalent Mealy FSM can be derived from

Moore FSM and vice versa
• Mealy FSM Has Richer Description and

Usually Requires Smaller Number of States
• Smaller circuit area

12

23

Moore vs. Mealy FSM (2)

• Mealy FSM Computes Outputs as soon as
Inputs Change
• Mealy FSM responds one clock cycle sooner

than equivalent Moore FSM
• Moore FSM Has No Combinational Path

Between Inputs and Outputs
• Moore FSM is less likely to affect the critical

path of the entire circuit

24

Which Way to Go?

Safer.
Less likely to affect

the critical path.

Mealy FSM Moore FSM

Lower Area

Responds one clock
cycle earlier

Fewer states

13

Problem 1

Assuming state diagram given on the next slide,
supplement timing waveforms given in the answer sheet

with the correct values of signals
State and c, in the interval from 0 to 575 ns.

Z

Reset

X Y

0-/1

1-/0

-1/0

-0/1

-0/1

-1/0

14

Clk

a

b

State

c

Reset

0 ns 100 ns 200 ns 300 ns 400 ns 500 ns

28ECE 448 – FPGA and ASIC Design with VHDL

Finite State Machines
in VHDL

15

29

FSMs in VHDL
• Finite State Machines Can Be Easily

Described With Processes
• Synthesis Tools Understand FSM

Description if Certain Rules Are Followed
• State transitions should be described in a

process sensitive to clock and asynchronous
reset signals only

• Output function described using rules for
combinational logic, i.e. as concurrent
statements or a process with all inputs in the
sensitivity list

30

Moore FSM

Present State
Register

Next State
function

Output
function

Inputs

Present State

Next State

Outputs

clock
reset

process(clock, reset)

concurrent
statements

16

31

Mealy FSM

Next State
function

Output
function

Inputs

Present StateNext State

Outputs

Present State
Register

clock
reset

process(clock, reset)

concurrent
statements

32

Moore FSM - Example 1

• Moore FSM that Recognizes Sequence “10”

S0 / 0 S1 / 0 S2 / 1

0
0

0

1

1
1

reset

17

33

Moore FSM in VHDL (1)

TYPE state IS (S0, S1, S2);
SIGNAL Moore_state: state;

U_Moore: PROCESS (clock, reset)
BEGIN

IF(reset = ‘1’) THEN
Moore_state <= S0;

ELSIF (clock = ‘1’ AND clock’event) THEN
CASE Moore_state IS

WHEN S0 =>
IF input = ‘1’ THEN

Moore_state <= S1;
ELSE

Moore_state <= S0;
END IF;

34

Moore FSM in VHDL (2)
WHEN S1 =>

IF input = ‘0’ THEN
Moore_state <= S2;

ELSE
Moore_state <= S1;

END IF;
WHEN S2 =>

IF input = ‘0’ THEN
Moore_state <= S0;

ELSE
Moore_state <= S1;

END IF;
END CASE;

END IF;
END PROCESS;

Output <= ‘1’WHEN Moore_state = S2 ELSE ‘0’;

18

35

Mealy FSM - Example 1

• Mealy FSM that Recognizes Sequence
“10”

S0 S1

0 / 0 1 / 0 1 / 0

0 / 1reset

36

Mealy FSM in VHDL (1)
TYPE state IS (S0, S1);
SIGNAL Mealy_state: state;

U_Mealy: PROCESS(clock, reset)
BEGIN

IF(reset = ‘1’) THEN
Mealy_state <= S0;

ELSIF (clock = ‘1’ AND clock’event) THEN
CASE Mealy_state IS

WHEN S0 =>
IF input = ‘1’ THEN

Mealy_state <= S1;
ELSE

Mealy_state <= S0;
END IF;

19

37

Mealy FSM in VHDL (2)
WHEN S1 =>

IF input = ‘0’ THEN
Mealy_state <= S0;

ELSE
Mealy_state <= S1;

END IF;
END CASE;

END IF;
END PROCESS;

Output <= ‘1’WHEN (Mealy_state = S1 AND input = ‘0’) ELSE ‘0’;

38

Moore FSM – Example 2: State diagram

C z 1=

Reset

B z 0=A z 0=w 0=

w 1=

w 1=

w 0=

w 0= w 1=

20

39

Present Next state Output
state w = 0 w = 1 z

A A B 0
B A C 0
C A C 1

Moore FSM – Example 2: State table

40

USE ieee.std_logic_1164.all ;

ENTITY simple IS
PORT (clock : IN STD_LOGIC ;

resetn : IN STD_LOGIC ;
w : IN STD_LOGIC ;
z : OUT STD_LOGIC) ;

END simple ;

ARCHITECTURE Behavior OF simple IS
TYPE State_type IS (A, B, C) ;
SIGNAL y : State_type ;

BEGIN
PROCESS (resetn, clock)
BEGIN

IF resetn = '0' THEN
y <= A ;

ELSIF (Clock'EVENT AND Clock = '1') THEN

Example 2: VHDL code (1)

21

41

CASE y IS
WHEN A =>

IF w = '0' THEN
y <= A ;

ELSE
y <= B ;

END IF ;
WHEN B =>

IF w = '0' THEN
y <= A ;

ELSE
y <= C ;

END IF ;
WHEN C =>

IF w = '0' THEN
y <= A ;

ELSE
y <= C ;

END IF ;
END CASE ;

Example 2: VHDL code (2)

42

Example 2: VHDL code (3)

END IF ;
END PROCESS ;

z <= '1' WHEN y = C ELSE '0' ;

END Behavior ;

22

43

A

w 0= z 0=

w 1= z 1=Bw 0= z 0=

Reset
w 1= z 0=

Mealy FSM – Example 3: State diagram

44

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY Mealy IS
PORT (clock : IN STD_LOGIC ;

resetn : IN STD_LOGIC ;
w : IN STD_LOGIC ;
z : OUT STD_LOGIC) ;

END Mealy ;

ARCHITECTURE Behavior OF Mealy IS
TYPE State_type IS (A, B) ;
SIGNAL y : State_type ;

BEGIN
PROCESS (resetn, clock)
BEGIN

IF resetn = '0' THEN
y <= A ;

ELSIF (clock'EVENT AND clock = '1') THEN

Example 3: VHDL code (1)

23

45

Example 3: VHDL code (2)

CASE y IS
WHEN A =>

IF w = '0' THEN
y <= A ;

ELSE
y <= B ;

END IF ;
WHEN B =>

IF w = '0' THEN
y <= A ;

ELSE
y <= B ;

END IF ;
END CASE ;

46

Example 3: VHDL code (3)

END IF ;
END PROCESS ;

z <= '1' WHEN (y = B) AND (w=‘1’) ELSE '0' ;

END Behavior ;

24

47

Control Unit Example: Arbiter (1)

Arbiter

reset

r1

r2

r3

g1

g2

g3

clock

48

Idle

000

1--

Reset

gnt1 g1 1=

-1-

gnt2 g2 1=

--1

gnt3 g3 1=

0-- 1--

01--0-

001--0

Control Unit Example: Arbiter (2)

25

49

Control Unit Example: Arbiter (3)

r1r2

r1r2r3

Idle

Reset

gnt1 g1 1=

gnt2 g2 1=

gnt3 g3 1=

r1r1

r1

r2

r3

r2

r3

r1r2r3

r1r2

r1r2r3

Idle

Reset

gnt1 g1 1=

gnt2 g2 1=

gnt3 g3 1=

r1r1

r1

r2

r3

r2

r3

r1r2r3

50

Example 4: VHDL code (1)

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY arbiter IS
PORT (Clock, Resetn : IN STD_LOGIC ;

r : IN STD_LOGIC_VECTOR(1 TO 3) ;
g : OUT STD_LOGIC_VECTOR(1 TO 3)) ;

END arbiter ;

ARCHITECTURE Behavior OF arbiter IS
TYPE State_type IS (Idle, gnt1, gnt2, gnt3) ;
SIGNAL y : State_type ;

26

51

Example 4: VHDL code (2)
BEGIN

PROCESS (Resetn, Clock)
BEGIN

IF Resetn = '0' THEN y <= Idle ;
ELSIF (Clock'EVENT AND Clock = '1') THEN

CASE y IS
WHEN Idle =>

IF r(1) = '1' THEN y <= gnt1 ;
ELSIF r(2) = '1' THEN y <= gnt2 ;
ELSIF r(3) = '1' THEN y <= gnt3 ;
ELSE y <= Idle ;
END IF ;

WHEN gnt1 =>
IF r(1) = '1' THEN y <= gnt1 ;
ELSE y <= Idle ;
END IF ;

WHEN gnt2 =>
IF r(2) = '1' THEN y <= gnt2 ;
ELSE y <= Idle ;
END IF ;

52

Example 4: VHDL code (3)
WHEN gnt3 =>

IF r(3) = '1' THEN y <= gnt3 ;
ELSE y <= Idle ;
END IF ;

END CASE ;
END IF ;

END PROCESS ;

g(1) <= '1' WHEN y = gnt1 ELSE '0' ;
g(2) <= '1' WHEN y = gnt2 ELSE '0' ;
g(3) <= '1' WHEN y = gnt3 ELSE '0' ;

END Behavior ;

27

Problem 2

Assuming ASM chart given on the next slide,
supplement timing waveforms given in the answer

sheet with the correct values of signals
State, g1, g2, g3, in the interval from 0 to 575 ns.

Clk

r1

r2

State

Reset

r3

g1

g2

g3
0 ns 100 ns 200 ns 300 ns 400 ns 500 ns

28

55

Generalized FSM

Based on RTL Hardware Design by P. Chu

56

Moore Machine State Diagram

•Design a vending machine that has only one
coin slot and takes nickels (5¢) and dimes(10¢),
and sells candies costing 15¢ each.
•If you pay with 2 dimes, it keeps the change.
•Transitions occur when you insert a coin.
•Must hit reset to restart the machine after
vending.

29

57

Moore Machine state
Diagram

Either
N or D

Both
N and D

N

N

N+D

[1]
15¢

0¢

5¢

10¢

D

[0]

[0]

[0]

N D + Reset

Reset

Reset

N D

N D

D

Reset

Current state

Output

Input
Causes a State Transition

58

State encoding

• Remember I said that encoding the
states was not always obvious.

• Here, the states are 0c, 5c, 10c, 15c.
• You could use 4 F/Fs to encode the

actual numbers.
• You could also use 2 F/Fs to encode

the number in multiples of 5c.
• 0c ->0, 5c-> 1, 10c->2, 15c->3.
• This costs less to build.
• It also has no forbidden states

30

59

Exercise

• Write the state diagram for a payphone
that takes nickels, dimes, and quarters.

• Phone calls cost 25c.
• No change is given.
• However if you hit a ‘next call’ button,

when you have credit, you can use that
to pay for the next call.

60

Mealy
Machine
State Diagram

N/0

N/0

N+D/1
15¢

0¢

5¢

10¢

D/0

N D + Reset/0

Reset/0

Reset/1

N D/0

N D/0

D/1

Reset

Current state

Output

Input
Causes a State Transition

31

61

Moore vs. Mealy Notation

Sometimes the Mealy Machine can be simplifiedSometimes the Mealy Machine can be simplified

N

N

N+D

[1]
15¢

0¢

5¢

10¢

D

[0]

[0]

[0]

N D + Reset

Reset

Reset

N D

N D

D

Reset

N/0

N/0

N+D/1
15¢

0¢

5¢

10¢

D/0

N D + Reset/0

Reset/0

Reset/1

N D/0

N D/0

D/1

Reset

62

Moore Machine Example
Example: Consider a machine that asserts its output

when the input has 2 or more consecutive 1s
Example: Consider a machine that asserts its output

when the input has 2 or more consecutive 1s

1

1

0

1

2

0

[0]

[0]

[1]

1

0

0 0. Last input = 00. Last input = 0

Moore MachineMoore Machine

1. Last two inputs = 011. Last two inputs = 01

2. Last two inputs = 112. Last two inputs = 11

Three statesThree states

32

63

Mealy Machine Example

1/0

0

1

0/0

0/0 1/1

0. Last input = 0.
Output = 0, for
either input

0. Last input = 0.
Output = 0, for
either input

Mealy MachineMealy Machine

1. Last input = 1.
Output = 1 for input =1,
Output = 0 for input = 0.

1. Last input = 1.
Output = 1 for input =1,
Output = 0 for input = 0.

Two statesTwo states

0?

1?

Interpretation
of states

Example: Consider a machine that asserts its output when
the input has 2 or more consecutive 1s

Example: Consider a machine that asserts its output when
the input has 2 or more consecutive 1s

64

Designers prefer Mealy,
because of the fewer states.

Designers prefer Mealy,
because of the fewer states.

Compare Moore vs. Mealy

1

1

0

1

2

0

[0]

[0]

[1]

1

0

0 1/0

0

1

0/0

0/0 1/1

Mealy MachineMealy MachineMoore MachineMoore Machine

33

65
65

Example: A sequence detector (Mealy)

To illustrate the design of a clocked Mealy sequential
circuit, we will design a sequence detector.

The circuit is of the form:

serial bit stream (input)
output (serial bit stream)

66
66

Example: A sequence detector (Mealy)

Suppose we want to design the sequence detector so that
any input sequence ending in 101 will produce an output of
Z = 1 coincident with the last 1.

The circuit does not reset when a 1 output occurs.

A typical input sequence and the corresponding output
sequence are:

X = 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0

Z = 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0

(time: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)

34

67

Example: A sequence detector (Mealy)

Initially, we do not know how many flip-flops will be required,
so we will designate the circuit states as S0, S1, etc.

We will start with a reset state designated S0.

If a 0 input is received, the circuit can stay in S0 because the
input sequence we are looking for does not start with a 0.

68

Example: A sequence detector (Mealy)

State Graph for the Mealy Machine

35

69

Example: A sequence detector (Moore)

The procedure for finding the state graph for a Moore
machine is similar to that used for a Mealy machine, except
that the output is written with the state.

We will rework the previous example as a Moore machine:
the circuit should produce an output of 1 only if an input
sequence ending in 101 has occurred.

70

Example: A sequence detector (Moore)

State Graph for the Moore Machine

36

71

Example: Another FSM (Moore)

Design a Moore sequential circuit with one input X and
one output Z. The output Z is to be 1 if the total number of
1’s received is odd and at least two consecutive 0’s have
been received. A typical input and output sequence is:

72

Example: Another FSM (Moore)

37

73

Example: Another FSM (Mealy)

A sequential circuit has one input (X) and one output (Z).
The circuit examines groups of four consecutive inputs and
produces an output Z = 1 if the input sequence 0101 or
1001 occurs. The circuit resets after every four inputs. Find
a Mealy state graph. A typical input and output sequence is:

74

Example: Another FSM (Mealy)

38

75

Exercise

The machine returns the 5¢ deposit on a
container to the user.
For every five containers returned, the
machine dispenses a quarter.
If the user has less than five containers
credit when the user presses the DONE
button, the machine dispenses the correct
number of nickels.
If the DONE button is pressed with no
containers in the machine, no coins are
dispensed.

Specifications for a deposit return machineSpecifications for a deposit return machine

76

Deposit Machine - 1
Step 1. Understand the problemStep 1. Understand the problem

Block Diagram

Deposit
Return

Machine

Count
Done

Reset

Clock

25¢

Can
Input

Sensor

INPUTS OUTPUTS

5¢

39

77

Deposit Machine - 2a

Typical input sequencesTypical input sequences

0 cans @ 0¢, Done
1 can @ 5¢, Done
2 cans @ 10¢, Done
3 cans @ 15¢, Done
4 cans @ 20¢, Done
5 cans @ 25¢, Done
5 cans @ 25¢  dispense quarter, 0 cans @ 0¢

Step 2. Map into more suitable abstract representationStep 2. Map into more suitable abstract representation

Assumption:
Can Sensor Input and Done
Button cannot be asserted at
the same time

Assumption:
Can Sensor Input and Done
Button cannot be asserted at
the same time

78

Deposit Machine - 2b
Step 2. Map into more suitable abstract representationStep 2. Map into more suitable abstract representation

Reset

-

-
C

C

[0¢]
0

[0¢]
1

[0¢]
2

[0¢]
3

[0¢]
4

[25¢]
5

[5¢]
6

[5¢]
7

[5¢]
8

[5¢]
9D

D

D

D

D
D,-

C

C C

-

-

--

-

-

C

i.e., D + C' D'i.e., D + C' D'

i.e., C' D'i.e., C' D'

State diagram notationState diagram notation

Inputs: C(an), D(one)
Note: Reset (is used only
to start the FSM)

Outputs: [25¢], [5¢]

Inputs: C(an), D(one)
Note: Reset (is used only
to start the FSM)

Outputs: [25¢], [5¢]

