Inheritance

Inheritance Motivation

 Inheritance in Java is achieved through
extending classes

Inheritance enables:

» Code re-use

* Grouping similar code
 Flexibility to customize

Inheritance Concepts

* Many real-life objects are related in a
nierarchical fashion such that lower levels of the
nierarchy inherit characteristics of the upper
evels.
e.g.,

mammal O primate I human

vehicle [J car [Honda Accord

person [0 employee I faculty member

* These types of hierarchies/relationships may be
called IS-A (e.g., a primate is-a mammal).

Inheritance Concepts - Hierarchy

The inheritance hierarchy
IS usually drawn as an
inverted (upside-down)
tree.

The tree can have any
number of levels.

The class at the top (base)
of the inverted tree is called
the root class.

In Java, the root class is
called Object.

Vehicle

Truck

Car

Motorcycle

Sedan

Coupe

Limousine

Object Root Class

* The Object root class provides the
following capabillities to all Java objects:

— Event handling - synchronizing execution of
multiple executable objects (e.g., a print
spooler and a printer driver)

— Cloning — creating an exact copy of an object

— Finalization — cleaning up when an object is
no longer needed

— Equality checking
— Querying runtime class

Inheritance Concepts - Terms

OOP languages provide specific mechanisms for
defining inheritance relationships between
classes.

Derived (Child) Class - a class that inherits
characteristics of another class.

Base (Parent) Class - a class from which
characteristics are inherited by one or more
other classes.

A derived class inherits data and function
members from ALL of its base classes.

A portion of a Shape class hierarchy.

hape

/\

TwoDimensionalShape ThreeD|men5|ona|S ape

TN

Circle Square Triangle here Cube Tetrahedron

Inheritance Concepts - Example

Employee

SSN FirstName LastName

Employee() print()

getSSN() setSSN()

getFirstName() setFirstName()

getLastName() setLastName()

HourlyEmployee SalariedEmployee
Salary Salary

HowlyEmployee() getSalary() SalaritedEmployee() getSalary()
computeGrossPay() setSalary() computeGrossPay() setSalary()
computeNetPay() print() computeNetPay() print()

Inheritance Concepts — Employee
Example

Employee is a base class.

HourlyEmployee and SalariedEmployee are derived
classes that inherit all data and function members from
Employee.

— e.g., SSN and setLastName()

Each derived class can add data and function members.
— e.g., Salary and computeGrossPay())

Different derived classes can defined the same members
with different data types or implementations.

— e.g., Salary can be a float in HourlyEmployee and an int in
SalariedEmployee, computeGrossPay() can use a different
algorithm in each derived class.

Inheritance - Embedded Objects

Think of each derived class object as having a base class
object embedded within it.

HourlyEmployee
Salary
HowrlyEmployee
getSalyaryOp i Employee
print() _ |
putSalary() SSN FirstName LastName
computeGrossPay() _
computeNetPay() Employee() print()
getSSN() setSSN()
getFirstName() setFirstName()
getLastName() setLastName()

Java Inheritance Declarations

* No special coding is required to designate a
base class, e.q.,

class Employee { .. }

* A derived class must specifically declare the
base class from which it is derived, e.qg.,

class HourlyEmployee extends Employee { .. }

Abstract and Final Classes

A base class can be declared with the keyword
abstract, e.q.,

abstract class Employee { .. }

An abstract class cannot be instantiated

— An attempt to create an object of type Employee
generates an InstantiationError exception.

A class can be declared with the keyword final,
e.g.,

final class Employee { .. }
A final class cannot be extended

Inheritance - Constructor Functions

* When an object of a derived class is
created, the constructor functions of the
derived class and all base classes are
also called.

— In what order are constructor functions called
and executed?

— How are parameters passed to base class
constructor functions?

Constructor Function Calls

The derived class constructor function is called first - it
iInstantiates its parameters then calls the base class
constructor function.

The base class constructor function instantiates its
parameters and calls its base class constructor function.

If a base class has no base classes, it executes the body
of its constructor function

When a base class constructor function terminates the
nearest derived class constructor function executes.

Calls and parameter instantiation go “up the hierarchy”,
execution goes “down the hierarchy”

Constructor Function Calls -
Example

Order of call and execution for
HourlyEmployee():
* HourlyEmployee() is called

* HourlyEm onee() instantiates its parameters and
calls Employee()

« Employee() instantiates its parameters and calls
Obiject()

* Object() instantiates its parameters, executes, and
returns to Employee()

 Employee() executes and returns to
HourlyEmployee ()

* HourlyEmployee() executes and returns

The keyword super

* Derived classes often need a way to refer to
data and function members in the base class.

* The keyword super, used within a derived class
flfnction, IS an alias for the name of the base
class.

* In the Employee example, the compiler
automatically substitutes "Employee” for “super”
anywhere it appears within member functions of
HourlyEmployee and SalariedEmployee.

Constructor Function Parameters

When an object is created:
— only one constructor function is called
— parameters are passed only to that constructor function

For example, the following code creates an
HourlyEmployee object and passes all parameters to the
HourlyEmployee constructor function:

HourlyEmployee Tom;
Tom = new HourlyEmployee (123456789, "Tom","Jones" ,15.50f) ;

But the first three parameters “belong” to the base class
(Employee) constructor function.

How can those parameters be passed to the Employee
constructor function?

Constructor Parameters -
Continued

* The keyword super enables parameter ?assing between
derived and base class constructor functions

* For example, the following code passes the first three
arameters from the HourlyEmployee constructor
unction to the Employee constructor function:

public HourlyEmployee (int newSSN, String newFirstName,

String newlLastName, float
newSalary)

{
super (newSSN, newFirstName,h newLastName) ;
salary=newSalary;

} // end HourlyEmployee (int, String, String, float)

Constructor Parameters -
Continued

 |If a super call to the base class constructor
function appears in a derived class constructor
function it must be the first executable line.

 |f there are no parameters to pass to the base
class constructor function, the super call can be
omitted.

* |If the super call is omitted, the compiler
automatically inserts a call to the base class
default constructor function at the beginning of
the derived class constructor function.

Inheritance - Member Override

« When a member of a derived class has the
same name as a member of a base class the
derived class member is said to override the
base class member.

* The derived class member “hides” the base
class member unless a qualified name is used.

 Both the base and derived class
Implementations of the overridden data or
function member exist within each derived class
object.

Naming Ambiguity

 Inheritance creates naming ambiguities
when both base and derived classes have
data or function members of the same
name.

» Consider print() in the Employee example —
both the base class Employee and the
derived classes HourlyEmployee and
Salaried employee declare print()

* In the following code, which version of print()
is called?

HourlyEmployee Jane = new HourlyEmployee() ;
Jane.print() ;

Naming Ambiguity - Continued

* In the previous example the version of print()
defined in HourlyEmployee() will always be
called, if it exists.

* If there is no print() in HourlyEmployee, the
compiler will look for it in the parent class
Employee.

 The compiler searches up the inheritance
hierarchy until it finds print() or runs out of parent
classes (at which point it will generate an error).

Naming Ambiguity - Continued

Naming ambiguity can also exist within derived class
functions. For examgle, what version of print() is called
in the following code™

public class HourlyEmployee extends Employee
{

// .. data and other function declarations not shown

public void print()

{
print();
System.out.print (“salary=") ;
System.out.println (salary);

}
} // end class HourlyEmployee

Naming Ambiguity - Rules

* The embedded call to print() on the previous
slide is an example of an unqualified name or
reference (it's also a recursive function call!).

* |tis “unqualified” because the programmer

hasn't explicitly told the compiler which print()
version to call.

» The compiler always resolves an unqualified
name to the “closest” instance - defined as
follows:

1. Alocal name (e.g., a function parameter)
2. A member of the derived class
3. A member of the closest base class

Qualifying Names With super

* A name can be qualified with the keyword
super to override the default resolution.

* For example, the statement:
super.print () ;

within a derived class function explicitly
calls the base class print() function.

More Example

Superclass Subclasses
Student GraduateStudent
UndergraduateStudent
Shape Circle
Triangle
Rectangle
Loan CarLoan
HomelImprovementLoan
MortgageLoan
Employee Facul tyMember
StaffMember
Account CheckingAccount
SavingsAccount

Fig. 9.1 Some simple inheritance examples in which the subclass “is a” superclass.

Fig. 9.2 An inheritance hierarchy for university
CommunilityMembers.

Communi tyMember is a direct
superclass of Employee

Gonmmuni t yMenber

CommunityMember is i I
an indirect superclass of | \

Faculty St udent Al ummi

Facul ty Saff

N

Adm ni strat or Teacher

Fig. 9.3 A portion of a Shape class hierarchy.

Shape
/‘/ ‘\
TwoDO nensi onal Shape Thr eeDi nensi onal Shape

R]

Circle Squar e Triangl e Sphere Qube Tet r ahedr on

protected Members

* protected access members
— Between public and private in protection

— Accessed only by
* Superclass methods
» Subclass methods

* Methods of classes in same package
— package access

WoJoulbd WwWNR

// Fig. 9.4: Point.java

// Definition of class Point

public class Point { Af/é///’/,,/”
protected int x, y; oordinates

// No-argument constructor

protected members prevent

clients from direct access (unless

clients are Point subclasses or
are in same package)

public Point()
{

// implicit call to superclass constructor occurs here

setPoint(0, 0);
}

// constructor

public Point(int xCoordinate, int yCoordinate)

{

// implicit call to superclass constructor occurs here
setPoint (xCoordinate, yCoordinate) ;

}

// set x and y coordinates of Point

public void setPoint(int xCoordinate, int yCoordinate)

{

x = xCoordinate;
y = yCoordinate;

}

// get x coordinate
public int getX()
{

return x;

}

Point. java

Line 5

protected members
prevent clients from
direct access (unless
clients are Point
subclasses or are in
same package)

34
35
36
37
38
39
40
41
42
43
44
45
46

}

// get y coordinate
public int getY¥()
{

return y;

}

// convert into a String representation

public String toString()

{

return "[" + x + ",

}

// end class Point

" + y + "]";

Point. java

WoJoulbd WwWNR

// Fig. 9.5: Circle.java

// Definition of class Circle
public class Circle extends Point {

Circle is a Point subclass

// inherits from Point

Circle. java

protected double radius; ‘\\\\\\
// no-argument constructor

public Circle()
{

// implicit call to superclas

Circle inherits Point’s
protected variables and public
methods (except for constuctor)

Line 4
fircleisa Point

setRadius(0) ;
}

// constructor

ubclass

Line 4

N

Implicit call to Point constructor |inherits

public Circle(double circleRadius, int xCCloxruxmace;

int yCoordinate)

{

// call superclass constructor to set coordinates
super (xCoordinate, yCoordinate) ;

// set radius
setRadius(circleRadius) ;

}

// set radius of Circle

Explicit call to Point
constructor using super

public void setRadius(double circleRadius)

{

radius = (circleRadius >= 0.0 ? circleRadius : 0.0);

}

Point’s protected
variables and public
methods (except for
constuctor)

Line 10
Implicit call to Point
constructor

Line 19
Explicit call to Point

constructor using
super

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

}

// get radius of Circle
public double getRadius ()

{

return radius;

}

// calculate area of Circle
public double area()

{

return Math.PI * radius * radius;

}

Circle. java

Lines 44-48%
Override method

toString of class

// convert the Circle to a String

Override method toString of class
Point by using same signature

by using same
Ire

public String toString() /
{

return "Center = " + "[" + x + ",
"; Radius = " + radius;

}

// end class Circle

" + y + n] n +

WoJoulbd WwWNR

// Fig. 9.6: InheritanceTest.java
// Demonstrating the "is a" relationship

// Java core packages
import java.text.DecimalFormat;

// Java extension packages
import javax.swing.JOptionPane;

public class InheritanceTest ({

InheritanceTest.
java

Lines 18-19
Instantiate objects

e 22

// test classes Point and Circle L;'Isnstantiate Point and Circle objects

public static void main(String a [T)

Point pointl, point2;
Circle circlel, circle2;

Circle invokes
method toString

pointl = new Point(30, 50);
circlel = new Circle(2.7, 1205, 89); x///

Circle invokes its overridden

String output = "Point pointl: " + pointl.toString() references subclass
"\nCircle circlel: " + circlel.toString()
// use "is a" relationship to refer to a Circl Supenﬂasscﬁﬁectcan, g. Kk
. . : INVOKES
Jff CEUER £ BERINE EFRTCHED reference subclass object _
point2 = circlel; // assigns e to a Po —errcle’s toString
methad

output += "\n\nCircle circlel (via point2 4
point2. toString() ;

_ a's/ overridden toString method
// use downcasting (cdsting a superclass reércremcc——co—o

Point still invokes Circle’s

// subclass data type) to assign point2 to circle2

circle2 = (Circle) point2;

Downcast Point to
Circle

Downcast Point to Circle

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

}

}

output += "\n\nCircle circlel (vi

circle2.toString(); «— |

Circle invokes its overridden
toString method

DecimalFormat precision2 = new DecimalFormat (

output += "\nArea of c¢ (via circle2): " +

"0.00"); .
InheritanceTest.

precision2.format(circle2.area());

Circle invokes method area

// attempt to refer to Point object with Circle reference

if (pointl instanceof Circle) {

Line 36

nvokes its
| toString

Use instanceof to determine
if Point refers to Circle

circle2 = (Circle) pointl; ‘\\\\\\\
output += "\n\ncast successfull;

}

else
output += "\n\npointl does not refer

JOptionPane.showMessageDialog(null, output
JOptionPane . INFORMATION MESSAGE) ;

System.exit(0);

// end class InheritanceTest

14
"Demonstrating the \"is a\" relationship",

IITVUIIUT

o a Circle";

T ine 40
If Point refers to Circle,
cast Point asCircle

kes

Line 43

Use instanceof to
determine i1f Point
refers to Circle

Line 44

If Point refers to
Circle, cast Point
asCircle

Fig. 9.6 Assigning subclass references to superclass references

E;i Demonstrating the "is a" relationship x|

-::i Point point1: [30, 50]
= Circle circle1: Center = [120, 89]; Radius = 2.7

Circle circle1 (via point2 reference): Center = [120, 89]; Radius = 2.7

Circle circle1 (via circle2): Center = [120, 89]; Radius = 2.7
Area of c (via circle2); 22.90

point1 does not refer to a Circle

@

[] 2002 Prentice Hall. All rights reserved. - -

9.5 Constructors and Finalizers in
Subclasses (cont.)

e finalize method

— Garbage collection
— Subclass finalize method
 should invoke superclass £inalize method

[] 2002 Prentice Hall. All rights reserved. - -

WoJoulbd WwWNR

// Fig. 9.7: Point.java

// Definition of class Point
public class Point extends Object {
protected int x, y; // coordinates of the Point

}

// no-argument constructor
public Point ()
{

x =0;

y = 0;

System.out.println(

}

// constructor
public Point(3
{
x = xCoordinate;
y = yCoordinate;

Superclass constructors

oint constructor: " + this);

t xCoordinate, int yCoordinate)

System.out.println("Point constructor: " + this);

}

Point. java

Lines 7-20
Superclass constructors

Lines 23-26

Superclass finalize
method uses
protected for
subclass access, but not
for other clients

// finalizer

protected void finalize() ‘////////
{

System.out.println("Point final

Superclass £inalize method uses
protected for subclass access,
but not for other clients

}

// convert Point into a String representation

public String toString()

{
return "[" + x + ", " + y + nyv,;
}

// end class Point

WoJoulbd WwWNR

// Fig. 9.8: Circle.java

// Definition of class Circle

public class Circle extends Point {
protected double radius;

// no-argument constructor
public Circle()

{

}

// implicit call
radius = 0;

o superclass constructor here

// inherits from Point

Implicit call to Point constructor

lircle. java

Line 9
Implicit call to Point

constructor

System.out.println("Circle constructor: " + this);

// Constructor

public Circle(double circleRadius, int xCoordinate,

{

}

int yCoordinate)

// call superclass constructor

Line 19
Explicit call to Point

constructor using

Explicit call to Point

super (xCoordinate, yCoordinate); / el ie using super
Override Point’s

radius = circleRadius;

System.out.println("Circle constructor: " + this);

// finalizer
protected void finalize()

{

System.out.println("CIrcle
super.finalize() ;

26-30

method £finalize,

but call it using super

Override Point’s method
finalize, but call it using super

superclass finalize method

32
33
34
35
36
37
38
39

}

// convert the Circle to a String
public String toString()

{

return "Center = " + super.toString() +
"; Radius = " + radius;

}

// end class Circle

Circle. java

Test.java

1 // Fig. 9.9: Test.java

2 // Demonstrate when superclass and subclass

3 // constructors and finalizers are called.

4 1i 1 T c . :
- public class Test { Instantiate Circle objects
6 // test when constructors and finalizers are called

7 public static void main(String args|[])

8 {

9 Circle circlel, circle2;

10

11 circlel = new Circle(4.5, 72, 29).

12 circle2 = new Circle(10, 5, 5);

13

14 circlel = null; // mark for garbage collection

15 circle2 = null; // mark for garbage collection

16

17 System.gc() ; // call the garbage collector

18 }

19

Lines 10-11
Instantiate Circle

objects

Line 17

Invoke Circle’s
method £inalize by
calling System.gc

20 '} // end class Test Invoke Circle’s method

finalize by calling System.gc

Point constructor: Center = [72, 29]; Radius = 0.0

Circle constructor: Center = [72, 29]; Radius = 4.5
Point constructor: Center = [5, 5]; Radius = 0.0
Circle constructor: Center = [5, 5]; Radius = 10.0

Circle finalizer: Center = [72, 29]; Radius = 4.5
Point finalizer: Center = [72, 29]; Radius = 4.5
Circle finalizer: Center = [5, 5]; Radius = 10.0

Point finalizer: Center = [5, 5]; Radius = 10.0

	Inheritance
	Inheritance Motivation
	Inheritance Concepts
	Inheritance Concepts - Hierarchy
	Object Root Class
	Inheritance Concepts - Terms
	A portion of a Shape class hierarchy.
	Inheritance Concepts - Example
	Inheritance Concepts – Employee Example
	Inheritance - Embedded Objects
	Java Inheritance Declarations
	Abstract and Final Classes
	Inheritance - Constructor Functions
	Constructor Function Calls
	Constructor Function Calls - Example
	The keyword super
	Constructor Function Parameters
	Constructor Parameters - Continued
	Slide 19
	Inheritance - Member Override
	Naming Ambiguity
	Naming Ambiguity - Continued
	Slide 23
	Naming Ambiguity - Rules
	Qualifying Names With super
	More Example
	Fig. 9.2 An inheritance hierarchy for university CommunityMembers.
	Fig. 9.3 A portion of a Shape class hierarchy.
	protected Members
	Point.java Line 5 protected members prevent clients from direct access (unless clients are Point subclasses or are in same package)
	Point.java
	Circle.java Line 4 Circle is a Point subclass Line 4 Circle inherits Point’s protected variables and public methods (except for constuctor) Line 10 Implicit call to Point constructor Line 19 Explicit call to Point constructor using super
	Circle.java Lines 44-48 Override method toString of class Point by using same signature
	InheritanceTest.java Lines 18-19 Instantiate objects Line 22 Circle invokes method toString Line 26 Superclass object references subclass Line 29 Point invokes Circle’s toString method Line 33 Downcast Point to Circle
	InheritanceTest.java Line 36 Circle invokes its overridden toString method Line 40 Circle invokes method area Line 43 Use instanceof to determine if Point refers to Circle Line 44 If Point refers to Circle, cast Point as Circle
	Fig. 9.6 Assigning subclass references to superclass references
	9.5 Constructors and Finalizers in Subclasses (cont.)
	Point.java Lines 7-20 Superclass constructors Lines 23-26 Superclass finalize method uses protected for subclass access, but not for other clients
	Circle.java Line 9 Implicit call to Point constructor Line 19 Explicit call to Point constructor using super Lines 26-30 Override Point’s method finalize, but call it using super
	Circle.java
	Test.java Lines 10-11 Instantiate Circle objects Line 17 Invoke Circle’s method finalize by calling System.gc

